Abstract:
A flash memory is provided. A sawtooth gate conductor line, which interconnects the select gates of the select gate transistors arranged on the same column is provided. The sawtooth gate conductor line, which is disposed on both distal ends of a memory cell string, increases the integration of the flash memory. The sawtooth gate conductor line results in select gate transistors having different select gate lengths and produces at least one depletion-mode select transistor at one side of the memory cell string. The select gate transistor of the depletion-mode is always turned on.
Abstract:
A programmable memory structure includes a substrate, an active area, a common-source and a common-drain respectively disposed on each side of the active area, a first and a second source contact electrically connected to the common-source, a first and a second drain contact electrically connected to the common-drain, and between the first and the second source contact and the first and the second drain contact a plurality of programmable memory cells including a first and a second dielectric layer respectively encapsulating a first and a second floating gate.
Abstract:
A method for manufacturing a flash memory includes providing a substrate with a sacrificial oxide layer, a sacrificial poly-Si layer, a hard mask layer and a trench exposing part of the substrate and filled with an oxide layer, later depositing a oxide layer conformally on the sacrificial oxide layer and the oxide layer, and afterwards removing the oxide layer on the sacrificial oxide layer and on the top of the oxide layer and the sacrificial oxide layer to form a spacer as a STI oxide spacer.
Abstract:
A method for manufacturing a flash memory includes providing a substrate with a sacrificial oxide layer, a sacrificial poly-Si layer, a hard mask layer and a trench exposing part of the substrate and filled with an oxide layer, later depositing a oxide layer conformally on the sacrificial oxide layer and the oxide layer, and afterwards removing the oxide layer on the sacrificial oxide layer and on the top of the oxide layer and the sacrificial oxide layer to form a spacer as a STI oxide spacer.
Abstract:
The present invention discloses a flash memory. The flash memory includes a substrate and a memory string, a plurality of landing pads, a plurality of common source lines, a plurality of bit line contacts and at least a bit line, which are disposed on the substrate in sequence. The memory string includes a plurality of storage transistors. The landing pads are disposed between each of the storage transistors. The common source lines and the bit line contact are electrically connected to the landing pads alternatively. The common line is disposed on the common line contacts and is electrically connected thereto. The present invention further provides a manufacturing method of making the same.
Abstract:
A method for adjusting the trench depth of a substrate has the steps as follows. Forming a patterned covering layer on the substrate, wherein the patterned covering layer defines a wider spacing and a narrower spacing. Forming a wider buffering layer arranged in the wider spacing and a narrower buffering layer arranged in the narrower spacing. The thickness of the narrower buffering layer is thinner than the wider buffering layer. Implementing dry etching process to make the substrate corresponding to the wider and the narrower buffering layers form a plurality of trenches. When etching the wider and the narrower buffering layers, the narrower buffering layer is removed firstly, so that the substrate corresponding to the narrower buffering layer will be etched early than the substrate corresponding to the wider buffering layer.
Abstract:
A fabricating method of an insulator for replacing a gate structure in a substrate by the insulator. The fabricating method includes the step of providing a substrate including a first buried gate structure. The first buried structure includes a first trench embedded in the substrate and a first gate filling in the first trench. The first trench has a first depth. Then, the first gate of the first buried structure is removed. Later, the substrate under the first trench is etched to elongate the depth of the first trench from the first depth to a third depth. Finally, an insulating material fills in the first trench with the third depth to form an insulator of the present invention.
Abstract:
A nonvolatile memory cell is provided. A semiconductor substrate is provided. A conducting layer and a spacer layer are sequentially disposed above the semiconductor substrate. At least a trench having a bottom and plural side surfaces is defined in the conducting layer and the spacer layer. A first oxide layer is formed at the bottom of the trench. A dielectric layer is formed on the first oxide layer, the spacer layer and the plural side surfaces of the trench. A first polysilicon layer is formed in the trench. And a first portion of the dielectric layer on the spacer layer is removed, so that a basic structure for the nonvolatile memory cell is formed.
Abstract:
A memory layout structure is disclosed, in which, a lengthwise direction of each active area and each row of active areas form an included angle not equal to zero and not equal to 90 degrees, bit lines and word lines cross over each other above the active areas, the bit lines are each disposed above a row of active areas, bit line contact plugs or node contact plugs may be each disposed entirely on an source/drain region, or partially on the source/drain region and partially extend downward along a sidewall (edge wall) of the substrate of the active area to carry out a sidewall contact. Self-aligned node contact plugs are each disposed between two adjacent bit lines and between two adjacent word lines.
Abstract:
A method for manufacturing a memory includes first providing a substrate with a horizontally adjacent control gate region and floating gate region which includes a sacrificial layer and sacrificial sidewalls, removing the sacrificial layer and sacrificial sidewalls to expose the substrate, forming dielectric sidewalls adjacent to the control gate region, forming a floating gate dielectric layer on the exposed substrate and forming a floating gate layer adjacent to the dielectric sidewalls and on the floating gate dielectric layer.