Abstract:
A method of transferring sets of video line data and macroblock data, includes the steps of determining a macroblock period and a video line period longer than the macroblock period, dividing each set of video line data to be transferred within the video line period into two or more portions according to the difference between the determined macroblock period and video line period, aligning a burst transfer of each of the portions of the divided set of video line data and each set of macroblock data to the macroblock period, and initiating the burst transfer of the sets of video line data and macroblock data at macroblock period intervals.
Abstract:
A method and apparatus are provided for filtering banding noise in a signal representative of an image. The method includes detecting, by a banding noise detector, banding noise in a neighborhood of a current pixel of the image, determining, by an adaptive filter weight decision unit, a number of banding steps in the neighborhood of the current pixel, determining, by the adaptive filter weight decision unit, a difference between a current pixel value and a previous output value, selecting, by the adaptive filter weight decision unit, a filter weight based on the number of banding steps, the difference between the current pixel value and the previous output value, and the detected banding noise, and filtering, by a recursive filter, the current pixel value according to the selected filter weight.
Abstract:
A capacitive humidity sensor includes a first electrode, a humidity sensitive dielectric layer, and a second electrode. The humidity sensitive dielectric layer is between the first and the second electrodes. The humidity sensitive dielectric layer is etched at selected regions to form hollow regions between the first and second electrodes.
Abstract:
In an embodiment, a channel estimator includes first and second stages. The first stage is operable to generate a respective one-dimensional array of first channel-estimation coefficients for each communication path of a communication channel, and the second stage is operable to generate a multi-dimensional array of second channel-estimation coefficients in response to the first channel-estimation coefficients. For example, such a channel estimator may estimate the response of a channel over which propagates an orthogonal-frequency-division-multiplexed (OFDM) signal that suffers from inter-carrier interference (ICI) due to Doppler spread. Such a channel estimator may estimate the channel response more efficiently, and with a simpler algorithm, than conventional channel estimators. Furthermore, such a channel estimator may be able to dynamically account for changes in the number of communication paths that compose the channel, for changes in the delays of these paths, or the portions of the transmitted symbol energy carried by these paths.
Abstract:
A circuit for converting charge measured from a touch screen into a digital signal can include a sample and hold circuit. The sample and hold circuit can sample and integrate a charge from a capacitive sense matrix, and hold a voltage signal representing the measured charge. A sigma delta converter can convert the voltage into a digital value.
Abstract:
An ink jet printhead device includes a substrate and at least one first dielectric layer above the substrate. A resistive layer is above the at least one first dielectric layer. An electrode layer is above the resistive layer and defines first and second electrodes coupled to the resistive layer. At least one second dielectric layer is above the electrode layer and contacts the resistive layer through the at least one opening. The at least one second dielectric layer has a compressive stress magnitude of at least 340 MPa.
Abstract:
A method for forming a trench MOSFET includes doping a body region of the trench MOSFET in multiple ion implantation steps each having different ion implantation energy. The method further comprises etching the trench to a depth of about 1.7 μm.
Abstract:
Configurable flip-flop cells for use in scan chain configurations include one or more multiplexers, a flip-flop, and one or more logic gates. The logic gates are configurable, through modification of different metallization or semiconductor layers, to operate as spare gates or to disable flip-flop cell outputs based selection signal switching between scan shift and capture mode. When disabling flip-flop cell outputs, the logic gates are configured to receive both a test signal and a data input signal and select one of the two to pass to the flip-flop based on the selection signal. When used as spare gates, the logic gates receive external inputs and provide spare gate outputs to circuitry on an integrated circuit that is external to the flip-flop cells.
Abstract:
Composite materials having conductive properties are described for use in testing circuits and in manufacturing electrical switches. The composite materials described, when in an unstressed state, generally behave as insulators. However, when sufficient mechanical pressure is applied to portions of the composite materials, the portions to which the mechanical pressure is applied become increasingly conductive. Methods for testing a PCB using composite material switches are also disclosed. A sheet that includes a composite material may be used to test electrical functionality of various regions on a PCB by way of local pressure application. The sheet may be easily applied to and removed from the PCB. Additionally, in forming an electrical switch, a voltage applied to one or more actuating elements may be used to provide mechanical pressure to a composite material that is disposed between two conductive members. Application of a sufficient voltage allows for portions of the composite material to transition from an insulator to a conductor for providing an electrical pathway.
Abstract:
In an embodiment, an apparatus includes a determiner, converter, adapter, and modifier. The determiner is configured to generate a representation of a difference between a first frequency at which a first signal is sampled and a second frequency at which a second signal is sampled, and the converter is configured to generate a second sample of the first signal at a second time in response to the representation and a first sample of the first signal at a first time. The adapter is configured to generate a sample of a modifier signal in response to the second sample of the first signal, and the modifier is configured to generate a modified sample of the second signal in response to a sample of the second signal and the sample of the modifier signal. For example, such an apparatus may be able to reduce the magnitude of an echo signal in a system having an audio pickup (e.g., a microphone) near an audio output (e.g., a speaker).