Abstract:
A pulsed compression reactor may include a reactor housing, a spring piston, and a driver piston. The reactor housing may define an interior volume, and may include a first passage and a second passage which lead to the interior volume. The spring piston may be positioned within the interior volume, wherein the spring piston and the reactor housing at least partially define a perimeter of a gas spring buffer chamber within the interior volume. The driver piston may be positioned within the interior volume, wherein the spring piston, the driver piston, and the reactor housing at least partially define a perimeter of a reaction chamber within the interior volume.
Abstract:
Provided is a highly practical pressure vessel in which there is minimal inside diameter deformation even if openings in a center inlet/outlet part are large, and there is little pressure-induced elongation from a center to both ends. This pressure vessel is composed of a tube body made of a fiber-reinforced resin, wherein: a center inlet/outlet part that lets a liquid in or out is provided to a tube-body-axial center part on a peripheral surface of the tube body; end-part inlet/outlet parts that let a fluid in or out are provided to tube-body-axial end parts of the tube body; the tube body is configured from a helical layer of which fibers are inclined at an angle of from ±40° to less than ±50° relative to a tube-body-axial direction, a reinforcing layer of which fibers are inclined at a greater angle than the helical layer relative to the tube-body-axial direction, and a seal layer constituting an innermost layer; a breakaway part that breaks away circumferentially outward from the seal layer is provided to a position on the helical layer where the center inlet/outlet part is provided; the reinforcing layer is configured from an inward reinforcing layer and an outward reinforcing layer provided respectively to inward and outward sides of the helical layer so as to enclose the breakaway part of the helical layer therebetween; and the center inlet/outlet part is provided so as to penetrate the inward reinforcing layer, the breakaway part of the helical layer, and the outward reinforcing layer.
Abstract:
The disclosure pertains to an urea production plant and process using a thermal stripper, wherein the reaction mixture is separated in two parts, wherein the first part is supplied at least in part to the thermal stripper and the second part at least in part bypasses the thermal stripper and is supplied to a medium pressure recovery section.
Abstract:
The invention discloses a method for producing bio-fuel (BF) from a high-viscosity biomass using thermo-chemical conversion of the biomass in a production line (10) with pumping means (PM), heating means (HM) and cooling means (CM). The method has the steps of 1) operating the pumping means, the heating means and the cooling means so that the production line is under supercritical fluid conditions (SCF) to induce biomass conversion in a conversion zone (CZ) within the production line, and 2) operating the pumping means so that at least part of the production line is in an oscillatory flow (OF) mode. The invention is advantageous for providing an improved method for producing biofuel from a high-viscosity biomass. This is performed by an advantageous combination of two operating modes: supercritical fluid (SCF) conditions and oscillatory flow (OF).
Abstract:
An autoclave system comprises an autoclave vessel 210, for performing a leaching operation on sacrificial ceramic cores (not shown) and a storage vessel 220 for containing caustic leaching fluid 230. Interposed in a fluid flow path between the vessel 210 and the tank 220 is a heat exchange unit 240, comprising a body 250 containing a thermal exchange medium, in the form of water 260, and first and second thermal exchange conduits represented at 270 and 280. A thermal exchange medium inlet pipe 290a and a thermal exchange medium outlet pipe 290b are provided to the body so that the medium 260 can be replenished, preferably substantially continuously, to optimize thermal transfer efficiency.
Abstract:
Large-scale manufacturing of gallium nitride boules using m-plane or wedge-shaped seed crystals can be accomplished using ammonothermal growth methods. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and crystals are grown ammonothermally. The orientation of the m-plane or wedge-shaped seed crystals are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus.
Abstract:
A heat-treatment device for heat treating packaged products that are available in bulk, and to a method of using the device. The device includes: a chamber; a tank for containing a fluid of a density such that the packaged products float when they are poured in bulk into the fluid, the tank presenting an evacuation compartment for evacuating floating products, the evacuation compartment including a hatch that is suitable for being submerged and then opened so as to evacuate a portion of the fluid including the floating products; fluid supply means for filling the tank and for regulating the level of fluid in the tank; submersion means; recovery means; and reception means.