Abstract:
A polycrystalline compact includes diamond, cubic boron nitride, and at least one hard material, which may be aluminum nitride, gallium nitride, silicon nitride, titanium nitride, silicon carbide, titanium carbide, titanium boride, titanium diboride, and/or aluminum boride. The diamond, the cubic boron nitride, and the hard material are intermixed and interbonded to form a polycrystalline material. An earth-boring tool includes a bit body and a polycrystalline diamond compact secured to the bit body. Methods of fabricating polycrystalline compacts include forming a mixture comprising diamond, non-cubic boron nitride, and a metal or semimetal; encapsulating the mixture in a container; and subjecting the encapsulated mixture to high-pressure and high-temperature conditions to form a polycrystalline material.
Abstract:
An apparatus and associated method for large-scale manufacturing of gallium nitride is provided. The apparatus comprises a large diameter autoclave and a raw material basket. Methods include metered addition of dopants in the raw material and control of the atmosphere during crystal growth. The apparatus and methods are scalable up to very large volumes and are cost effective.
Abstract:
An apparatus and method for processing materials in supercritical fluids is disclosed. The apparatus includes a capsule configured to contain a supercritical fluid, a high strength enclosure disposed about the capsule and a sensor configured to sense pressure difference between an interior and an exterior of the capsule. The apparatus also includes a pressure control device configured to adjust pressure difference of the capsule in response to the pressure difference sensed by the sensor. The apparatus further includes at least one dividing structure disposed within the capsule that divides the capsule into a seed growing chamber and a nutrient chamber.
Abstract:
A gallium nitride growth process forms crystalline gallium nitride. The process comprises the steps of providing a source gallium nitride; providing mineralizer; providing solvent; providing a capsule; disposing the source gallium nitride, mineralizer and solvent in the capsule; sealing the capsule; disposing the capsule in a pressure cell; and subjecting the pressure cell to high pressure and high temperature (HPHT) conditions for a length of time sufficient to dissolve the source gallium nitride and precipitate the source gallium nitride into at least one gallium nitride crystal. The invention also provides for gallium nitride crystals formed by the processes of the invention.
Abstract:
A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. IN a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
Abstract:
A method for large-scale manufacturing of gallium nitride includes a process for reducing and/or minimizing contamination in the crystals, for solvent addition to an autoclave, for improving or optimizing the solvent atmosphere composition, for removal of the solvent from the autoclave, and for recycling of the solvent. The method is scalable up to large volumes and is cost effective.
Abstract:
A method for removing defects at high pressure and high temperature (HP/HT) or for relieving strain in a non-diamond crystal commences by providing a crystal, which contains defects, and a pressure medium. The crystal and the pressure medium are disposed in a high pressure cell and placed in a high pressure apparatus, for processing under reaction conditions of sufficiently high pressure and high temperature for a time adequate for one or more of removing defects or relieving strain in the single crystal.
Abstract:
A method for removing defects at high pressure and high temperature (HP/HT) or for relieving strain in a non-diamond crystal commences by providing a crystal, which contains defects, and a pressure medium. The crystal and the pressure medium are disposed in a high pressure cell and placed in a high pressure apparatus, for processing under reaction conditions of sufficiently high pressure and high temperature for a time adequate for one or more of removing defects or relieving strain in the single crystal.
Abstract:
A process for producing single-crystal gallium nitride comprising the steps of performing congruent melting of gallium nitride at a high pressure between 6×104 atm. and 10×104 atm. and at a high temperature between 2,200° C. and 2,500° C. and then slowly cooling the obtained gallium nitride melt at the stated high pressure.
Abstract:
A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. In a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.