Abstract:
A power actuator for lifting a pivotal lift gate closing an access opening in a motor vehicle body. The actuator includes a lower tubular housing; a lead screw having a lower head portion journaled in a lower portion of the tubular housing and a threaded shaft portion extending upwardly from the head portion within the tubular housing; a tubular extender rod positioned slidably and telescopically within the tubular housing in concentric surrounding relation to the shaft portion of the lead screw and including a nut structure proximate a lower end thereof threadably engaging the shaft portion of the lead screw; a pivotal mounting structure on the lower end of the tubular housing to pivotally mount the lower end of the tubular housing to a side edge of the access opening; a pivotal mounting structure on the upper end of the tubular extender rod for pivotally mounting the extender rod to the lift gate; an electric motor positioned on the motor vehicle body proximate the access opening; and a flexible cable extending from the output of the motor and passing through an aperture in the lower end of the tubular housing for driving engagement with the head portion of the lead screw. The cable is mounted for rotation about a lengthwise axis of the cable whereby actuation of the motor moves the tubular extender rod axially relative to the tubular housing and provides opening or closing movement of the gate.
Abstract:
A power door operator for mounting overhead of a door opening in a mass transit vehicle for moving a door panel over and away from the door opening, including a base plate incorporating a rotary helical drive internal of a door hanger. The door panel is locked in a closed position by primary and secondary means preventing drive rotation and panel movement.
Abstract:
A door closer (20) is attachable to a door (24) and is formed with a chamber (44) in which a piston element (50) is movable to move fluid from the chamber to a reservoir (82) upon opening of the door. After the door (24) has been opened to a position, for example, of sixty to seventy-five degrees, continued opening of the door causes the fluid to be compressed within the chamber (44) and to be directed only through a back check valve (95) to the reservoir (82). This results in the development of an adjustable "back check" condition to provide a counterforce to the continued opening of the door. The adjustable valve (95) includes a spring biased ball (144), the biasing of which must be overcome by the force of the fluid being compressed in the chamber (44) to allow for fluid to pass through the valve to the reservoir (82).The chamber (44) is formed partially by a spring tube (38) having slots (192) formed in the interior wall thereof which extends radially beyond convolutions of spring (52) contained within the tube. The slots (192) allow the fluid, and gas bubbles entrapped therein, to be moved beyond the convolutions of the spring (52) and to be moved unimpeded into the reservoir (82). Otherwise, the gas bubbles would be trapped in the chamber (44) and would deleteriously affect the operation of the door closer (20).
Abstract:
A door closer (20) is attachable to a door (24) and is formed with a chamber (44) in which a piston element (50) is movable to move fluid from the chamber to a reservoir (82) upon opening of the door. After the door (24) has been opened to a position, for example, of sixty to seventy-five degrees, continued opening of the door causes the fluid to be compressed within the chamber (44) and to be directed only through a back check valve (95) to the reservoir (82). This results in the development of an adjustable "back check" condition to provide a counterforce to the continued opening of the door. The adjustable valve (95) includes a spring biased ball (144), the biasing of which must be overcome by the force of the fluid being compressed in the chamber (44) to allow for fluid to pass through the valve to the reservoir (82).The chamber (44) is formed partially by a spring tube (38) having slots (192) formed in the interior wall thereof which extend radially beyond convolutions of spring (52) contained within the tube. The slots (192) allow the fluid, and gas bubbles entrapped therein, to be moved beyond the convolutions of the spring (52) and to be moved unimpeded into the reservoir (82). Otherwise, the gas bubbles would be trapped in the chamber (44) and would deleteriously affect the operation of the door closer (20).
Abstract:
A device for closing swinging doors of the type utilizing a rotating member to compress a spring during door opening to store energy in the spring to effect a closing of the door is provided with a driving connection to a d.c motor/generator effective to cause rotation of the motor during a closing movement of the door. The motor/generator acts as a generator during the closing with the generated electrical energy fed back to the motor/generator to retard rotation of the rotor, providing a brake on the closing movement of the door. The feedback circuitry includes a switch disabling or diminishing the braking during the final degrees of closing movement as well as a variable setting device allowing control of braking force.
Abstract:
Closing arrangement for sliding doors adapted to move between closed and open positions along a lengthwise guide track. The arrangement includes a rotor operatively connected with connecting links connected to the door and arranged to move along the guide track. Brake arrangement is mounted with a drive member mounted in coaxial alignment with the rotor shaft. The closing arrangement is provided with a coupling device which is operatively connected to the rotor shaft and comprises an electromagnetic coupling and a friction coupling mounted on a common shaft. The coupling device prevents an inadvertant backward movement of the open sliding door to its closed position.
Abstract:
A door operator of electromechanical character for utilization with pivotally mounted doors, as by a center pivot, a butt hinge, or an offset pivot, comprising a prime mover, a driving shaft, adapted for rotation about a vertical axis and being secured through an arm to the door to be operated. A gear train interconnects said prime mover and said driving shaft wherein the gears are mounted as by a unique arrangement of needle roller and needle thrust bearings to permit said gear train to operate smoothly in door opening operation as a speed reducer and in door closing operation as a gear increaser. Energy storing means operatively connected to said driving shaft for storing energy during door opening operation and for energy releasing to drive said gear shaft during door closing operation. The said operator is adapted for compact disposition within the header of a door frame.
Abstract:
A stationwagon vehicle body has a tailgate movable in an arcuate path between a lowered open position and a raised closed position. The tailgate is power actuated through a bi-directional drive mechanism which allows manual closing of the tailgate but prevents its manual opening.
Abstract:
A drive assembly configured to adjust a motor vehicle closure element including a clutch assembly provided with an input connection and an output connection. The clutch assembly includes a main braking element, configured to brake a movement from the output side, and a freewheel assembly configured to engage the main braking element from movement of the output side and disengage the main braking element by means of a movement from the input side. The brake assembly includes an auxiliary braking element configured to produce a predetermined permanent braking action by means of which the auxiliary braking element acts at least against the movement introduced on the output side, and that the predetermined permanent braking action of the auxiliary braking element has to be overcome to enable the freewheel assembly to disengage.
Abstract:
The invention concerns a drive unit for moving a door relative to a door's opening. The drive unit comprises a drive motor and a wheel transmission assembly arranged for transfer of power to a drive wheel configured for engagement with a running surface for moving the door. The wheel transmission comprises a transfer wheel driven by the drive motor. A movable wheel carrier comprises a first running wheel and a second running wheel arranged in in engagement with the transfer wheel. The movable wheel carrier is arranged for displacement between a free wheel position where the first and second running wheel are arranged disengaged from the drive wheel for no power transfer to occur from the drive motor to the drive wheel, at least one running position where either of the first and second running wheel is positioned in engagement with the drive wheel for the transfer of power from the drive motor to the drive wheel.