Abstract:
A hybrid drive system for a motor vehicle, and a method for operating a motor vehicle. The hybrid drive system includes an amplidyne-type generator and a counterpoise engine to provide the power required for charging the storage batteries and providing supplemental drive energy (acceleration) to the motor vehicle.
Abstract:
Hydraulic and pneumatic drive systems and fluid motors (12) and fluid pumps (10) therefor are disclosed. In such systems, rotation motion is converted to reciprocating motion or vice versa. In particular, a motion conversion means comprises a portion extending continuously and circumferentially around a central axis and extending in part longitudinally relative to the central axis, and a linking means, wherein the portion and the linking means are relatively rotatable about the central axis and a one of the linking means and the portion is fixedly coupled to a piston means, wherein the linking means and the portion are configured to cooperate whereby the reciprocating movement of the piston means causes relative rotary motion of the other of the portion and the linking means about said central axis. The other of the portion and the linking means may be coupled to a sleeve means to cause rotation thereof.
Abstract:
Engines may include a piston, an undulating circumferential track, and a converter. In some examples, engines may include a body, a liner and a rotating cylinder. The body may have a cylindrical interior defining an axis and may include an inlet opening and an exhaust opening. The liner may be mounted within the cylindrical interior. The rotating cylinder may include a port that is sequentially aligned with the inlet and exhaust openings on the body as the rotating cylinder rotates within the body. The piston may be disposed within the rotating cylinder and configured for reciprocating motion along the axis. The converter may be mounted to the piston, engaged with the undulating circumferential track, and configured to reciprocate with the piston. The track may cause the converter to rotate about the axis as the converter reciprocates along the axis. The rotating cylinder may rotate with the converter.
Abstract:
The present invention generally relates to a rotary engine and, more particularly, to a rotary engine that, by using cylinder wedge geometry improves output efficiency, and decreases fuel consumption, and at the same time is easy to manufacture, contains fewer parts, uses conventional sealing techniques and has the flexibility to increase or decrease the number of cylinders and rotors to improve the performance of the rotary engine. Also, by utilizing the same mechanism of cylinder wedge geometry, to produce a reliable and efficient air compressor or compressed air motor
Abstract:
A mechanism transforms a longitudinal reciprocation movement of a piston in a cylinder into a combined unidirectional rotation and reciprocating movement of the piston. In order to achieve this transformation the piston includes a closed wave shaped groove on its circumference. The closed wave shaped groove has recesses at its apexes. The recesses break the symmetry of the groove. Balls that are located in the cylinder protrude into the groove. When the piston is reciprocating, the groove slides on the balls. A flexible heat shrink ring secures the balls in place and assures that the balls are constantly biased toward the face of the groove.
Abstract:
The invention concerns an internal-combustion engine, the engine comprising a first combustion chamber, a first piston displaceably guided in the first combustion chamber, the first piston facing the first combustion chamber with a first piston surface in a first direction, a second combustion chamber, a second piston displaceably guided in the second combustion chamber, the second piston facing the second combustion chamber with a second piston surface in a second direction, the first direction and the second direction being opposed to each other, the first piston and the second piston being coupled to each other so that they move simultaneously.
Abstract:
An internal combustion engine includes a piston dividing a cylinder into first and second variable volume chambers on either side thereof. One chamber admits and compresses air which is delivered to another chamber for combustion. The other chamber admits combustion gasses, causing the piston to translate in the cylinder. In one embodiment, combustion of fuel occurs in a combustion chamber separate from the first and second variable volume chambers. In one embodiment, the translation of the piston effects movement of a connecting rod connected to an output shaft. In another embodiment, the piston is mounted on an output shaft and translation of the piston causes the piston to rotate, thus effecting rotation of the output shaft.