Abstract:
A bin system and a char recovery unit are provided with: a bin for storing char; three char discharge lines placed at the predetermined slope angle for causing the char to fall with the force of gravity so as to discharge the char into the bin; four switching lines placed at the predetermined slope angle for causing the char to fall with the force of gravity so as to feed the char stored in the bin; and assist gas feed units as assist devices for assisting the flow of the char that falls with the force of gravity through the char discharge lines. This allows for equipment downsizing.
Abstract:
An automated system and method are provided for conveying plant material bales. The system and method retrieves stacked bales from a storage site and places the bales on a conveyor assembly line, wherein the bales are indexed, accumulated, and metered for discharge into a bale shredder. Once the bales are on the conveyor assembly, the bales are automatically moved and arranged without manual intervention.
Abstract:
In a rapid load reduction mode for reducing a flow rate of powder to be supplied to the outside of a feed tank to a predetermined rate after a predetermined period of time, a controller sets an internal pressure control valve to an exhaust state and closes a powder discharge valve to a predetermined aperture, and as soon as the powder flow rate becomes smaller than a scheduled powder flow rate that is expected before elapse of the predetermined period of time, the controller controls at least one of the internal pressure control valve and the powder discharge valve so that the powder flow rate becomes the scheduled powder flow rate.
Abstract:
An injection system for solid particles comprises a conveying hopper (11) located at an upstream location (1), a fluidizing device (21) for fluidizing the solid particles at the outlet of the conveying hopper (11) and forming a solid-gas flow, a pneumatic conveying line (15) for conveying the solid-gas flow from the fluidizing device (21) to a downstream location (2) and a static distribution device (17) with a plurality of injection lines (19), connected thereto. An upstream flow control system controls the mass flow rate in the pneumatic conveying line (15) at the upstream location (1) by controlling the opening of an upstream flow control valve (35) responsive to the solid material mass flow measured in the pneumatic conveying line (15) at the upstream location (1). A downstream flow control system controls the mass flow rate in the pneumatic conveying line (15) at the downstream location (2) by controlling the opening of a downstream flow control valve (51, 79i) responsive to the instantaneous mass flow rate sensed by a main downstream mass flow rate sensor (53).
Abstract:
A method and system for processing biomass material from harvest to pelletizing includes a continuous shredding stage and grinding stage to reduce the size of the material. A fan pulls air through the shredder and the grinder to assist the movement of the biomass material through the shredder and the grinder. Due to the light weight of the biomass material, the material is transported between the shredding and grinding stages mechanically and pneumatically by a combination auger with air assist. The biomass material may include agricultural residues, such as corn stover. The process and equipment eliminates or minimizes damage to the carbohydrates in the biomass so as to maintain pre-grinding cellulose and hemi-cellulose levels.
Abstract:
A fuel head assembly (120) for a pulverized coal nozzle includes removeable back cover (123) that may be removed substantially horizontally to allow access to liners (141,143,145) inside of the fuel head assembly (120) for servicing. This may be used in places where there access from above the fuel head assembly (120) is restricted. The liners (141,143,145) are constructed of a wear-resistant material and include curved vanes (131,133) for more evenly distributing pulverized solid fuel particles, and for reducing erosion of the fuel head assembly (120).
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
Abstract:
An automated system and method are provided for conveying plant material bales. The system and method retrieves stacked bales from a storage site and places the bales on a conveyor assembly line, wherein the bales are indexed, accumulated, and metered for discharge into a bale shredder. Once the bales are on the conveyor assembly, the bales are automatically moved and arranged without manual intervention.
Abstract:
A dual fuel boiler has a granular fuel burner and a fluid fuel burner. The fluid fuel burner is movable between a retracted stored position at a side of a combustion chamber-of the boiler and an extended operative position in which it extends out over a brazier of the granular fuel burner. Thus in the operative position substantially all of the flame and hot combustion gases generated by the fluid fuel burner in use are directed away from the brazier to prevent damage to the brazier.
Abstract:
A method and to a device for delivering deliverable materials through a hollow chamber that is closed off from the outside air in a pressure-tight manner and that is supplied with materials via a storage container serving as a lock and that ends in the furnace chamber via a connecting tube. The delivery of the materials within the hollow chamber closed off from the outside air in a pressure-tight manner is carried out by means of depressurized mechanical conveyors.