Abstract:
Systems and methods to position beacons at traffic choke points, use a mobile device to detect the peaks of beacon signals corresponding to the mobile device traveling through the traffic “choke points”, and thus determine accurately the position and speed of the mobile device in the transport corridor between the choke points. The determined position and speed of the mobile device can be used to improve the performance of other location determination technologies, such as radio frequency fingerprint-based location estimate and/or inertial guidance location estimate.
Abstract:
A method and system for tracking mobile objects in a site are disclosed. The system comprises a computer cloud communicating with one or more imaging devices and one or more tag devices. Each tag device is attached to a mobile object, and has one or more sensors for sensing the motion of the mobile object. The computer cloud visually tracks mobile objects in the site using image streams captured by the imaging devices, and uses measurements obtained from tag devices to resolve ambiguity occurred in mobile object tracking. The computer cloud uses an optimization method to reduce power consumption of tag devices.
Abstract:
A broadcasting device includes a broadcasting unit configured to broadcast positional information indicating an indoor position of the broadcasting device to a predetermined area, wherein the broadcasting unit broadcasts range information indicating the size of the predetermined area together with the positional information.
Abstract:
Systems and techniques for determining the accuracy of network based user equipment (UE) locating methods and results thereof are disclosed. Periodic direct measurements of location error for a network based location result are determined by the difference in the network based location result and an assisted global positioning system (AGPS) location result. The location error is associated with a cell-pair contributing to data employed to determine the network based location result. The error associated with the cell-pair is then applied as a measure of accuracy in future network based location results that also employ data associated with the cell-pair to determine the future network based location result.
Abstract:
A method for locating a mobile device is disclosed. Initially, a set of modulated ultrasound signals and a set of radio signals are separately broadcast from a group of transmitters. The ultrasound signals include at least one symbol configured for pulse compression. After the receipt of a demodulated ultrasound signal from a mobile device, wherein the demodulated ultrasound signal is derived from the modulated ultrasound signals, transmitter identifier and timing information are extracted from the demodulated ultrasound signal. Timing information include, for example, the arrival time of the demodulated ultrasound signal in relation to the start time of its transmission. After the locations of the transmitters have been ascertained from the transmitter identifier information, the location of the mobile device can be determined based on the timing information and the locations of the transmitters.
Abstract:
A method is provided for determining a category of a location. The method comprises determining, at a first time, information identifying a first device location of a first device associated with a user; and storing the first device location information and information identifying the first time in a location history. The method further comprises determining, at a second time, information identifying a second device location of the first device; and storing, in the location history, the second device location information and information identifying the second time. The method still further comprises determining, based on the location history, a category of a location.
Abstract:
The invention pertains to a method and system for determining a location of an identification tag (100) in a monitored area. The method comprises using a plurality of beacons (200) to broadcast (2010) beacon messages comprising an identification element relating to the originating beacon; receiving (2020) at a first set of beacons a localisation message from an identification tag (100), the tag having received (1010) a beacon message, extracted (1020) the identification element from the received beacon message, and transmitted (1030) information related to the identification element as part of the localisation message; performing (3010) a first level of localisation of the tag on the basis of characteristics of the respective copies of the localisation message received at the first set of beacons; and performing (3020) a second level of localisation of the tag on the basis of the information related to the identification element.
Abstract:
A positioning unit of a terminal device measures the current position and outputs current position information. A beacon signal receiver of the terminal device receives a beacon signal and acquires a beacon ID of a beacon device included in the beacon signal. A processing unit of the terminal device refers to a beacon position database so as to acquire a beacon ID associated with the current position information, and sets the beacon ID to be acquired by the beacon signal receiver in accordance with the acquired beacon ID.
Abstract:
A system for filtering a terminal location by combining WiFi location information and sensor information, the system includes a filter that filters an inaccurate location of a terminal by combining location information calculated from WiFi signals and sensor information, and by using indicators to remove abnormal location information.
Abstract:
A system for determining the position of a mobile machine is disclosed. The system may include a first sensor configured to generate a first signal indicative of a pose of the mobile machine, a second sensor configured to generate a second signal indicative of a parameter of the mobile machine, and a controller in communication with the first and second sensors. The controller may be configured to generate a measured pose of the mobile machine based on the first signal, to generate an estimated pose of the mobile machine based on the second signal, and to determine uncertainty values associated with each of the measured and estimated poses. The controller may be further configured to determine overlap of the uncertainty values, to selectively adjust the measured pose based on the overlap, and to determine a pose solution based on the estimated pose and adjustment of the measured pose.