Abstract:
A pressure actuated switching device is made by applying at least a first layer of fluid conductive polymeric coating material to a surface of a sheet of green rubber material. The conductive polymeric coating is solidified to form an electrode, and the sheet of green rubber material is vulcanized. Two strips of green rubber may be simultaneously processed and then joined such that the respective layers of conductive coating are in spaced apart opposing relationship. The conductive polymeric coating may optionally be formulated with green rubber. Optionally, a blowing agent may be included in the conductive coating formulation so as to provide a cellular polymeric foam piezoresistive material from which the electrode is constructed. The green rubber sheets may be processed by a continuous rotary method or by a linear method using a clamping press having opening and closing dies for heating and joining the strips of green rubber.
Abstract:
A pointing device may be directly soldered to a printed circuit board. In one embodiment, a bottom substrate defines a sensing region with a plurality of interdigitated conductive trace regions. Each trace region includes interdigitated common and sense traces. At least one via passes through the bottom substrate for each trace. Each via supports a conductive path from one trace to at least one lead element. Each lead element is solderable to a printed circuit board. A flexible substrate is constructed from a heat resistant polymer. The flexible substrate has a resistive layer deposited on a bottom side. A raised pedestal is formed on the bottom substrate top face around at least a portion of the sensing region. The pedestal separates the interdigitated conductive traces from the flexible substrate resistive layer. A button on a keypad membrane may be used to depress the flexible substrate onto the trace region.
Abstract:
A pressure actuated switching device is made by applying at least a first layer of fluid conductive polymeric coating material to a surface of a sheet of green rubber material. The conductive polymeric coating is solidified to form an electrode, and the sheet of green rubber material is vulcanized. Two strips of green rubber may be simultaneously processed and then joined such that the respective layers of conductive coating are in spaced apart opposing relationship. The conductive polymeric coating may optionally be formulated with green rubber. Optionally, a blowing agent may be included in the conductive coating formulation so as to provide a cellular polymeric foam piezoresistive material from which the electrode is constructed. The green rubber sheets may be processed by a continuous rotary method or by a linear method using a clamping press having opening and closing dies for heating and joining the strips of green rubber.
Abstract:
A portable keyboard consists of a pliable key body and a circuit body. The key body has a plurality of key caps which is embedded with an electric contact made from conductive rubber. The circuit body is embedded with a connection line made from conductive rubber. The keyboard thus constructed is highly pliable, and may be bent, folded or twisted without affecting the electronic characteristics of the keyboard.
Abstract:
In a multi-directional operation switch, an operating disk, upon being pressed at its upper side, tilts to depress a elastic pressing member, thus making hard rings of the driving member to press a resistor sheet sequentially. This operation allows resistor layers beneath the resistor sheet to directly contact annular electrically conductive layers facing the resistor layers in a desired sequence, respectively. The multi-directional operation switch has a reduced height and can produce a number of switching signals according to desired angular directions of switching operations.
Abstract:
A pressure actuated switching device is made by applying at least a first layer of fluid conductive polymeric coating material to a surface of a sheet of green rubber material. The conductive polymeric coating is solidified to form an electrode, and the sheet of green rubber material is vulcanized. Two strips of green rubber may be simultaneously processed and then joined such that the respective layers of conductive coating are in spaced apart opposing relationship. The conductive polymeric coating may optionally be formulated with green rubber. Optionally, a blowing agent may be included in the conductive coating formulation so as to provide a cellular polymeric foam piezoresistive material from which the electrode is constructed. The green rubber sheets may be processed by a continuous rotary method or by a linear method using a clamping press having opening and closing dies for heating and joining the strips of green rubber.
Abstract:
Pressure sensitive direction devices are provided which may facilitate assembly and provide higher tolerance for variation in alignment of components while still providing for pressure sensitive direction detection. The devices of the present invention may be particularly advantageous when integrated into devices, such as cellular radiotelephones, to provide a user interface to facilitate user navigation through increasingly complex menu structures. In various embodiments, the present invention may detect pressure in addition to two and, preferably, at least four directions. In particular embodiments, the devices of the present invention provides a switching device having a plurality of trace grid areas located, for example, on a printed circuit board and actuated responsive to pressure applied by a user through a poly-dome layer where increase pressure results in contact with a greater number of the traces in respective grids. Alternative embodiments include trace patterns which are substantially circumferentially arranged in patterns configured to detect user input. A select switch is included in various embodiments of the present invention.
Abstract:
Pressure sensitive direction devices are provided which may facilitate assembly and provide higher tolerance for variation in alignment of components while still providing for pressure sensitive direction detection. The devices of the present invention may be particularly advantageous when integrated into devices, such as cellular radiotelephones, to provide a user interface to facilitate user navigation through increasingly complex menu structures. In various embodiments, the present invention may detect pressure in addition to two and, preferably, at least four directions. In particular embodiments, the devices of the present invention provides a switching device having a plurality of trace grid areas located, for example, on a printed circuit board and actuated responsive to pressure applied by a user through a poly-dome layer where increase pressure results in contact with a greater number of the traces in respective grids. Alternative embodiments include trace patterns which are substantially circumferentially arranged in patterns configured to detect user input. A select switch is included in various embodiments of the present invention.
Abstract:
A membrane switch that suppresses the growth, or migration, of metallic ion crystals caused by condensation. First and second metallic conductive layers are provided on an inside of the first and second resin film, respectively. First and second non-metallic conductive layers cover the first and second metallic conductive layers, respectively. A spacer separates the first and second metallic conductive layers and includes an inner wall that, together with the first and second metallic conductive layers, defines a spacer cavity. At least one of the first and second metallic conductive layers is located a prescribed distance from the spacer inner wall, as the spacer inner wall provides a pathway for the metallic ion crystal migration.
Abstract:
An improved internally-illuminable push-button switch unit is proposed, which is an assembly comprising:(a) an upper sheet member integrally consisting of a first elastic sheet having such a light-transmissivity as to ensure image-visibility therethrough and a key-top part made from a light-transmitting synthetic resin having a Shore D hardness of at least 40 and protruded on the upper surface of the first elastic sheet;(b) a lower sheet member integrally consisting of a second light-transmitting elastic sheet and a click-plate presser made from a light-transmitting material and protruded on the lower surface of the second elastic sheet, the lower sheet member being positioned below the upper sheet member;(c) a light-conducting plate positioned below the lower sheet member;(d) a click plate positioned below the lower sheet member;(e) a circuit board positioned below the lower sheet member; and(f) a light source positioned below the lower sheet member and above the circuit board,at least either one of the first and the second elastic sheets being provided on at least one of the surfaces with a colored layer.