Abstract:
The present invention relates to an alkali metal generating agent and others for formation of a photo-cathode or a secondary-electron emitting surface capable of stably generating an alkali metal. The alkali metal generating agent is used in formation of a photo-cathode for emitting a photoelectron corresponding to incident light, or in formation of a secondary-electron emitting surface for emitting secondary electrons corresponding to an incident electron. Particularly, the alkali metal generating agent contains at least an oxidizer comprising at least one vanadate with an alkali metal ion as a counter cation, and a reducer for reducing the ion. An alkali metal generating device comprises at least the alkali metal generating agent and a case housing it, and the case is provided with a discharge port for discharging the vapor of the alkali metal.
Abstract:
Cathodoluminescent field emission display devices feature phosphor biasing, amplification material layers for secondary electron emissions, oxide secondary emission enhancement layers, and ion barrier layers of silicon nitride, to provide high-efficiency, high-brightness field emission displays with improved operating characteristics and durability. The amplification materials include copper-barium, copper-beryllium, gold-barium, gold-calcium, silver-magnesium and tungsten-barium-gold, and other high amplification factor materials fashioned to produce high-level secondary electron emissions within a field emission display device. For enhanced secondary electron emissions, an amplification material layer can be coated with a near mono-molecular film consisting essentially of an oxide of barium, beryllium, calcium, magnesium or strontium. Use of a high amplification factor film as a phosphor biasing electrode, and variability of the phosphor biasing potential to achieve brightness or gray scale control are further described in the disclosure.
Abstract:
A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.
Abstract:
Cathodoluminescent field emission display devices feature phosphor biasing, amplification material layers for secondary electron emissions, oxide secondary emission enhancement layers, and ion barrier layers of silicon nitride, to provide high-efficiency, high-brightness field emission displays with improved operating characteristics and durability. The amplification materials include copper-barium, copper-beryllium, gold-barium, gold-calcium, silver-magnesium and tungsten-barium-gold, and other high amplification factor materials fashioned to produce high-level secondary electron emissions within a field emission display device. For enhanced secondary electron emissions, an amplification material layer can be coated with a near mono-molecular film consisting essentially of an oxide of barium, beryllium, calcium, magnesium or strontium. Use of a high amplification factor film as a phosphor biasing electrode, and variability of the phosphor biasing potential to achieve brightness or gray scale control are further described in the disclosure.
Abstract:
The invention is directed to continuous dynodes formed by thin-film processing techniques. According to one embodiment of the invention, a continuous dynode is formed by reacting a chemical vapor in the presence of a substrate at a temperature and pressure sufficient to result in chemical vapor deposition. In another embodiment, the layer is formed by liquid phase deposition and in another embodiment, the layer is formed by nitriding or oxidizing a substrate.
Abstract:
A method for fabricating an electron multiplier is provided. The method consists of depositing a random channel layer on a substrate such that the random channel layer is capable of producing a cascade secondary electron emission in response to an incident electron in the presence of an electric field.
Abstract:
Manufacture of a microchannel plate may be improved using photoelectrochemical etching and thin film activation such as CVD and nitriding and oxidizing wall surface portions of pores formed in the substrate. The pore pattern may be changed by oxidizing and etching the substrate prior to activation.