Abstract:
The present disclosure includes a photodetector element (11) that converts an optical signal into an electric current signal; a transimpedance amplifier (12a) that converts the electric current signal into a voltage signal; a differential amplifier (12d) that converts the voltage signal into a differential signal, by performing differential amplification of a difference between the voltage signal and a threshold voltage; an LOS detection circuit that detects a no-signal section of the optical signal; and an MCU that repeatedly executes offset cancellation processing, the offset cancellation processing including threshold voltage change processing in which the threshold voltage is changed such that an offset voltage of the differential signal is reduced, the MCU 13 skipping the threshold voltage change processing in the no-signal section.
Abstract:
The invention relates to a bidirectional wireless communication device which is based on the use of light, including emitting modules, each emitting amplitude- and/or phase-modulated light; and a receiving module made up of: a photodetector illuminated by said modulated light and generating a modulated electrical signal in response to said modulated light; and a processing module for processing the signal generated by said photodetector. The receiving module includes an electronic means positioned between the photodetector and the signal-processing module and capable of matching the impedance of the photodetector to maximise the signal-to-noise ratio of the electrical signal by minimising distortions of said electronic signal associated with incorrect impedance matching at the output of the photodetector, while maximising the level of the modulated electrical signal and the throughput of transmitted data.
Abstract:
A Dual Parallel (DP)-Inphase/Quadrature (I/Q) Mach-Zehnder Modulator (MZM) bias controller configured to generate a pair of orthogonal dither signals; multiply the pair of dither signals to create a second order orthogonal dither signal; and lock an Inphase (I) I MZM of a DP-I/Q MZM to a value of a corresponding I component of a transmission signal by applying the pair of orthogonal dither signal to a Quadrature (Q) MZM and a Phase (P) MZM of the DP-I/Q MZM; applying an I bias signal to the I MZM of the DP-I/Q MZM; detecting an output of the DP-I/Q MZM; and determining an I error signal in the output of the I MZM of the DP-I/Q MZM based on the product of second order dither signal and the output of the DP-I/Q MZM.
Abstract:
A method for creating an optical transmit signal includes creating an electrical discrete multi-tone signal according to digital input data carrying the information to be transmitted, the discrete multi-tone signal having a plurality of electrical partial signals, each electrical partial signal defining a sub-channel. Each electrical partial signal includes a sub-carrier at a predetermined sub-carrier frequency which is modulated according to a dedicated modulation scheme, so that a dedicated portion of the digital input data is included in each sub-channel. The method includes creating an optical signal by using the electrical discrete multi-tone signal as modulating signal for amplitude-modulating the intensity of an optical carrier signal. The method further includes bandpass-filtering the optical signal in order to create an optical single sideband or vestigial sideband transmit signal. An optical transmitter device for creating such an optical transmit signal and to an optical transmitter and receiver device includes a respective optical transmitter device.
Abstract:
Systems and methods for optical narrowcasting are provided for transmitting various types of content. Optical narrowcasting content indicative of the presence of additional information along with identifying information may be transmitted. The additional information (which may include meaningful amounts of advertising information, media, or any other content) may also be transmitted as optical narrowcasting content. Elements of an optical narrowcasting system may include optical transmitters and optical receivers which can be configured to be operative at distances ranging from, e.g., 400 meters to 1200 meters. Moreover, the elements can be implemented on a miniaturized scale in conjunction with small, user devices such as smartphones, thereby also realizing optical ad-hoc networking, as well as interoperability with other types of data networks. Optically narrowcast content can be used to augment a real-world experience, enhance and/or spawn new forms of social-media and media content.
Abstract:
Systems and methods for optical narrowcasting are provided for transmitting various types of content. Optical narrowcasting content indicative of the presence of additional information along with identifying information may be transmitted. The additional information (which may include meaningful amounts of advertising information, media, or any other content) may also be transmitted as optical narrowcasting content. Elements of an optical narrowcasting system may include optical transmitters and optical receivers which can be configured to be operative at distances ranging from, e.g., 400 meters to 1200 meters. Moreover, the elements can be implemented on a miniaturized scale in conjunction with small, user devices such as smartphones, thereby also realizing optical ad-hoc networking, as well as interoperability with other types of data networks. Optically narrowcast content can be used to augment a real-world experience, enhance and/or spawn new forms of social-media and media content.
Abstract:
Systems and methods for optical narrowcasting are provided for transmitting various types of content. Optical narrowcasting content indicative of the presence of additional information along with identifying information may be transmitted. The additional information (which may include meaningful amounts of advertising information, media, or any other content) may also be transmitted as optical narrowcasting content. Elements of an optical narrowcasting system may include optical transmitters and optical receivers which can be configured to be operative at distances ranging from, e.g., 400 meters to 1200 meters. Moreover, the elements can be implemented on a miniaturized scale in conjunction with small, user devices such as smartphones, thereby also realizing optical ad-hoc networking, as well as interoperability with other types of data networks. Optically narrowcast content can be used to augment a real-world experience, enhance and/or spawn new forms of social-media and media content.
Abstract:
Described are, among other things, a method and a receiver for receiving a management data signal in an optical transmission system where a traffic data signal is transmitted as a NRZ modulated signal. The traffic data signal has a management data signal superimposed thereon as a pulse width modulation of the symbols of the NRZ modulated signal. The NRZ modulated signal is received with the data signal superimposed thereon and the traffic data signal is recovered. The recovered traffic data signal in anti-phase is added to the received signal. The management data signal is detected from the added signals.
Abstract:
Systems and method are provided to for suppressing interference signals in optical systems, without prior knowledge of the type of location of the interferers, while maintaining a linear response to small signals of interest (SOI). By exploiting the unique power (or voltage) dependent transmission function of an externally angle-modulated photonic link, embodiments of the present disclosure are configured to provide strong, wideband interference suppression without requiring detailed knowledge of the interfering signal.
Abstract:
In order to be able to receive any digital optical signals in the bandwidth range from zero bits per second to the high Gbits/second range with as little circuit complexity as possible and to be able to process said signals with the least possible energy requirement for reprocessing, the invention proposes a circuit arrangement as well as a method for receiving digital optical signals by means of at least one light-receiving component connected upstream of at least one signal input port, particularly by means of at least one photodiode, wherein the unipolar current signal coming from the light-receiving component through the signal input port is transformed into a bipolar current signal by means of a compensation current provided by at least one current source, the value of said current being defined by means of at least one digital register.