Abstract:
A communication device capable of receiving data from a transmitting device via a communications link, the communication device comprising a buffer and being capable of generating, in dependence on the capacity of the buffer to accommodate data received over the communications link, information for inducing the transmitting device to change its data transmission rate, wherein the information imitates a change in a capability of the communication device to receive data via the communications link.
Abstract:
A method according to one embodiment includes the operations of assigning a network application to at least one first core processing unit, from among a plurality of core processing unit. The method of this embodiment also includes the operations of assigning a first receive queue to said first core processing unit, wherein the first receive queue is configured to receive packet flow associated with the network application; defining a high threshold for the first receive queue; and monitoring the packet flow in the first receive queue and comparing a packet flow level in the first receive queue to the high threshold; wherein if the packet flow level exceeds the threshold based on the comparing, generating a queue status message indicating that the packet flow level in the first queue has exceeded the queue high threshold.
Abstract:
Providing information related to a quality of a mobile communication link to an internal and/or external application provider is described herein. By way of example, a system can include component(s) that can receive communication link quality information associated with a mobile session, incorporate such information into a data packet, and forward such data packet to an application provider. The system can provide such information for second generation network components, third generation network components, and advanced components compatible with both second and third generation network architectures.
Abstract:
Methods, apparatus and other means for providing path characterisation information to a data sender relating to a network characteristic such as congestion experienced by data units traversing a path across a data network from the data sender towards one of a plurality of data receivers, the data units having associated therewith information indicative of the network characteristic, the path being traversed by the data units having at least a first path portion between said data sender and a proxy node along which data units may traverse conveying a measure indicative of the network characteristic that is representable by any of a first set of codepoints, the data receivers being operable to provide data acknowledgement units in respect of data units they receive via a second path portion in which information indicative of the network characteristic may only be representable using codepoints of a second set of codepoints having less codepoints than the first set of codepoints.
Abstract:
A method for implementing flow control in a switch fabric includes: sending, by each input port, request information to a destination output port where no packet congestion occurs; according to respective back pressure information, determining, by the destination output port which receives the request information, whether to return grant information to each input port to establish a matching relationship between each input port and the destination output port which returns the grant information; according to the matching relationship, scheduling, by each input port, a cell to a destination output port that is matched with each input port. Through the embodiments of the present invention, quantity of information transmitted between an input port and an output port is reduced, the design of the switch fabric is simplified, and data processing efficiency in the switch fabric is improved.
Abstract:
A communication system transmits data from a first circuit over a communication channel to a second circuit, the data having a first priority and a second priority. The communication system includes a separation circuit, a first-in first-out (FIFO) memory, and a control circuit.
Abstract:
Providing transport protocol within a communication network having a lossy link. The receiver distinguishes between packets received with non-congestion bit errors and packets having been not at all received due to congestion. When packets are received with non-congestion bit errors, the receiver sends selective acknowledgments indicating that the packets were received with bit errors while suppressing duplicate acknowledgments to prevent the invocation of a congestion mechanism.
Abstract:
There is disclosed a system and method for transmission of multiple data streams from a mobile device to a network. In an embodiment, the system includes a multipath wireless router configured to provide a plurality of network connections including cellular, satellite, or wired Ethernet. An encoding module provided on the mobile device is configured to encode high volume data (e.g. high definition video) recorded by the mobile device into multiple data streams in dependence on the number of network connections available for transmission via the multipath wireless router. The encoding module provided on the mobile device transmits the multiple data streams to the wireless router using Wi-Fi to provide a local, short-hop, high capacity network connection. The plurality of network connections available via the multipath wireless router provides the necessary capacity and reliability to transmit a high volume of data, such as high definition video, virtually live.
Abstract:
For allowing a very effective resource management and network utilization a method for resource management within a wireless network, especially EPS (Evolved Packet Core) of LTE (Long Term Evolution) network, is described, wherein a congestion control of data-traffic is performed. The method is characterized in that for congestion control a Re-ECN (Explicit Congestion Notification) function will be used wherein the Re-ECN function includes a policing function and a dropping function. Further, a corresponding wireless network is described, preferably for carrying out the above mentioned method
Abstract:
A large volume of location related information, e.g., assistance data or location information, is transferred in separate messages between a server and a target by segmenting the location related information into a plurality of messages. If the connection between the server and target is released prior to completion of the transfer of the location related information, the transfer is resumed by sending the remaining messages after connection is reestablished. Each message is sent after receiving an acknowledgement of receipt. Thus, both the server and target can control the flow of the transfer by delaying the sending of one or more messages or delaying the sending of the acknowledgements of receipt.