Abstract:
Wind turbine blade comprising a shape modifiable airfoil section that extends both chordwise and spanwise and has a not modified default shape, a conduit that extends from the inside of the blade towards the outside of the blade, and an outer part comprising a flow regulator that is located at the shape modifiable airfoil section and blocks the conduit when the shape modifiable airfoil section presents its default shape, and does not block the conduit when the shape modifiable airfoil section presents a modified shape. In the latter situation the conduit is opened to the outside of the blade and a device for exchanging a fluid between the inside and the outside of the blade is thus defined.
Abstract:
Wind turbine blade comprising a spar, a plurality of ribs rotatably mounted on said spar, and a rotating means adapted to rotate at least two consecutive ribs independently of each other. The blade can thus be operated so as to rotate at least two consecutive ribs independently of each other, although it is also possible to jointly rotate all the ribs.
Abstract:
Method of operating a wind turbine comprising a plurality of blades rotatable along their longitudinal axes using a pitch mechanism, and comprising one or more movable trailing edge surfaces. The method includes predicting, at a first moment in time, a high load for one or more of the blades at a second moment in time. The method further comprises actuating on one or more of the movable trailing edge surfaces of these blades such that the trailing edge surfaces have a wider range of control to counteract the predicted high loads before the second moment in time, and simultaneously pitching the blades such as not to negatively affect the operation of the wind turbine. The method furthermore comprises, at the second moment in time, actuating the one or more movable trailing edge surfaces of the at least one or more blades to counteract the high loads.
Abstract:
Floating TLP wind turbine comprising a buoyancy structure, a plurality of braces, one or more tensioned mooring lines for each brace, and a support structure arranged on the buoyancy structure. The braces extend radially outwardly from a region of the buoyancy structure or support structure, each brace having a distal end portion with respect to the buoyancy structure or support structure. Each distal end portion of the braces comprises a guiding element to allow a guided passage of a tensioned mooring line. Each of the tensioned mooring lines is anchored to the seabed at a first end, and attached/coupled to a region of the buoyancy structure or support structure at a second end, said region being above the region of the buoyancy structure or support structure from which the braces extend radially outwardly. Each tensioned mooring line is guided by the guiding element of the corresponding brace.
Abstract:
The double-regulated turbine comprises a spherical hub, adapted to rotate around a first rotation axis, and blades, which are each able to be swivelled relative to the hub around a second rotation axis, transversal to the first rotation axis, by respective coupling flanges that are mounted fixedly on the spherical hub and that include each an attachment surface for a corresponding blade. The attachment surface of the coupling flanges includes a flat portion.
Abstract:
Methods are provided of operating first and second wind turbines in a situation wherein presence of the first wind turbine affects the wind so that a wake is generated that affects the second wind turbine. These methods include determining parameters of the wind at first wind turbine and at second wind turbine. These methods further include determining a value of a parameter of a previously determined wake model to determine a current wake model. This value is determined based on the parameters of the wind at first wind turbine and at second wind turbine. These methods still further include optimizing the operation of the first and second wind turbines based on the current wake model. Control systems are also provided which are suitable for performing any of the methods of operating wind turbines. Wind farms are also provided including any of the control systems.
Abstract:
Floating TLP wind turbine comprising a buoyancy structure, a plurality of braces, one or more tensioned mooring lines for each brace, and a support structure arranged on the buoyancy structure. The braces extend radially outwardly from a region of the buoyancy structure or support structure, each brace having a distal end portion with respect to the buoyancy structure or support structure. Each distal end portion of the braces comprises a guiding element to allow a guided passage of a tensioned mooring line. Each of the tensioned mooring lines is anchored to the seabed at a first end, and attached/coupled to a region of the buoyancy structure or support structure at a second end, said region being above the region of the buoyancy structure or support structure from which the braces extend radially outwardly. Each tensioned mooring line is guided by the guiding element of the corresponding brace.
Abstract:
A method for determining one or more dynamic properties of a part of a wind turbine comprises the converter sending an input signal to the generator to create an input load, measuring a response from the part under the input load with one or more sensors, and determining one or more dynamic properties of the part from the response and the input load. Also disclosed are methods for determining a fault and for generating a fault register.
Abstract:
Wind turbine blades comprising one or more deformable trailing edge sections, each deformable trailing edge section comprising a first and a second actuator, wherein the second actuator is arranged substantially downstream from the first actuator, and wherein the first actuator is of a first type and wherein the second actuator is of a second type, the second type being different from the first type. The application further relates to wind turbines comprising such blades and methods of operating a wind turbine comprising one or more of such blades.
Abstract:
Wind turbine blades comprising one or more deformable trailing edge sections having a multistable sheet comprising a plurality of bistable elements, each bistable element having two stable positions, wherein the multistable sheet is attached in a cantilever manner to a structural portion of the blade and extends in a chordwise direction, and the multistable sheet is connected to a skin of the blade such that upon changing one or more bistable elements from one stable position to the other stable position a shape of the trailing edge section changes. The application further relates to wind turbines comprising such blades and methods of controlling loads on the blades.