Abstract:
A coaxial transmitter optical subassembly (TOSA) including a ball lens may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The coaxial TOSA includes a laser package with a ball lens holder section defining a lens holder cavity that receives the ball lens. The lens holder cavity is dimensioned such that the ball lens is positioned in substantial alignment with the laser diode for optically coupling a laser output from the laser diode into an optical waveguide at an optical coupling end of the TOSA. The coaxial TOSA is thus configured to allow the less expensive ball lens to be used in a relatively small package when a lower coupling efficiency and power is desired and without substantial redesign of the TOSA.
Abstract:
A coaxial transmitter optical subassembly (TOSA) with optical isolator alignment correction may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The coaxial TOSA includes an optical fiber coupling receptacle extending from a laser package. The laser package may include a laser diode and a lens to focus laser light emitted from the laser diode onto an optical fiber. The laser diode and lens are aligned along a first longitudinal axis of the laser package parallel to a transmission path of the laser light. An optical isolator located in the transmission path is aligned along a second longitudinal axis of the laser package. The second longitudinal axis is coincident with a centerline of the laser package, and the first longitudinal axis is offset from the second longitudinal axis by a predetermined offset distance to compensate for light shifting characteristics of the isolator.
Abstract:
A two-section semiconductor laser includes a gain section and a modulation-independent grating section to reduce chirp. The modulation-independent grating section includes a diffraction grating for reflecting light and forms a laser cavity with the gain section for lasing at a wavelength or range of wavelengths reflected by the diffraction grating. The gain section of the semiconductor laser includes a gain electrode for driving the gain section with at least a modulated RF signal and the grating section includes a grating electrode for driving the grating section with a DC bias current independent of the modulation of the gain section. The semiconductor laser may thus be directly modulated with the modulated RF signal without the modulation significantly affecting the index of refraction in the diffraction grating, thereby reducing chirp.
Abstract:
A coaxial transmitter optical subassembly (TOSA) including a cuboid type TO laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The cuboid type TO laser package is made of a thermally conductive material and has substantially flat outer surfaces that may be thermally coupled to substantially flat outer surfaces on a transceiver housing and/or on other cuboid type TO laser packages. An optical transceiver may include multiple coaxial TOSAs with the cuboid type TO laser packages stacked in the transceiver housing. The cuboid type TO laser package may thus provide improved thermal characteristics and a reduced size within the optical transceiver.
Abstract:
A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
Abstract:
An extended cavity Fabry-Perot laser assembly provides relatively narrow mode spacing while allowing relatively high speed optical modulation. The extended cavity Fabry-Perot laser assembly generally includes an exit reflector physically separated from a laser emitter (e.g., a gain chip) to extend the lasing cavity and narrow the mode spacing while maintaining a relatively small gain region in the laser emitter capable of higher speed optical modulation. The extended cavity Fabry-Perot laser assembly may be used in a multi-channel transmitter in a wavelength division multiplexed (WDM) optical system that selects a channel wavelength for the transmitter from among multiple channel wavelengths emitted by the laser assembly. The narrow mode spacing may be less than a WDM channel width, and more specifically, may be less than a channel passband of an arrayed waveguide grating (AWG) or other filter used to select the channel wavelength.
Abstract:
A tunable laser with multiple in-line sections generally includes a semiconductor laser body with a plurality of in-line laser sections each configured to be driven independently to generate laser light at a wavelength within a different respective wavelength range. The wavelength of the light generated in each of the laser sections may be tuned, in response to a temperature change, to a channel wavelength within the respective wavelength range. A switch module may be configured to couple a signal from a laser driver to a selected one of the plurality of in-line laser sections, wherein the signal modulates the laser light generated by the in-line laser section. The selected in-line section may be DC biased to a lasing state and the non-selected in-line sections may be DC biased to a non-lasing or transparent state.
Abstract:
A pluggable optical transceiver module for inserted into plugging slot includes main body and sliding component. The main body has opposite two side surfaces and two sliding slots. The two sliding slots are located at the two side surfaces. The sliding component includes linkage arm and two extending arms. The two extending arms are connected to the linkage arm. Each extending arm has a second fastening part. The main body is between the two extending arms. The two extending arms are disposed on the two sliding slots to have fastening position and releasing position. Two first fastening parts are fastened to the two second fastening parts when the two extending arms are located at fastening position. The two second fastening parts press the two first fastening parts, respectively, for the two first fastening parts being farther from each other when the two extending arms are located at releasing position.
Abstract:
A multi-channel optical transceiver includes a transmitter optical subassembly (TOSA) with a thermal arrayed waveguide grating (AWG) for multiplexing optical signals and a receiver optical subassembly (ROSA) with an athermal AWG for demultiplexing optical signals. The TOSA may also include a laser array optically coupled to the thermal AWG and a temperature control system thermally coupled to the laser array and the thermal AWG to control temperature for wavelength tuning. The temperature control system in the TOSA may include a thermoelectric cooler (TEC) that cools both the laser array and the thermal AWG. Because the athermal AWG in the ROSA is temperature independent, the ROSA does not include a TEC, thereby reducing power consumption and conserving space. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
Abstract:
A system is provided for improved coupling of photodetectors to optical demultiplexer outputs, for example an arrayed waveguide grating (AWG), using a refractive index matched material. In one embodiment, the system may include an optical demultiplexer including multiple optical outputs corresponding to multiple signal channels and a photodetector array including a plurality of photodiodes aligned with the multiple optical outputs. The system may also include an epoxy disposed within a gap between each of the photodiodes and each of the corresponding optical outputs of the optical demultiplexer. The epoxy may be configured to provide an index of refraction that is matched to the optical demultiplexer.