Abstract:
A microwave applicator device comprising a probe (11) for ablating the body of a human or animal, a cooling passage (20,21) extending through the probe (11) and arranged to carry a cooling fluid, a pump (71) for pumping the fluid through the probe (11), and an elongate flexible duct (104) extending between the pump (71) and one end of the cooling passage (20,21), the pump comprising a pump body (73) including a motor (120) and a pump head (72) detachably mounted to the pump body (73), the pump head (72) comprising a first port (86) connected to a proximal end of the elongate flow duct (104), a second port (85) and fluid propulsion means (84,92) for creating a flow of fluid between the ports (85,86) and along the elongate flow duct 104 upon energisation of the motor (120), the pump head (72) being arranged to sealingly contain the fluid. The pump head (72), the elongate flexible duct (104) and the probe (11) form a replaceable assembly that can be detached from the pump body (73) and discarded following use.
Abstract:
A system and method for catheter placement using ECG is provided. In certain embodiments, the system and method can generate a patient specific window for tracking a characteristic of an ECG waveform, such as the amplitude of a P-wave. The patient specific window can be utilized in a system and method for assisting in the placement of a catheter within a patient. In other embodiments, a tip location algorithm can be used with an anti-thrombogenic catheter and an intravascular electrode assembly for maintaining a high resolution intravascular signal in an ECG based catheter tip placement system.
Abstract:
Devices and methods for cleaning a port reservoir are disclosed. The system includes a trocar, cannula and cleaning member. In one embodiment, the cleaning member has scraping members disposed at its distal end for mechanical breakup of thrombus formation. The cleaning member can also have a lumen for infusing anti-coagulant fluid and aspirating loose pieces of thrombus formation.
Abstract:
A septum for a port is provided, the septum having a top wall and a side wall. The side wall can include a pressure-activated valve element for regulating the flow of fluid across the valve. The curvature of the side wall and the geometry of the sidewall and the housing can be tailored to bias the valve element to open at different pressures during infusion and aspiration. The side wall can also include an extended portion that can function as a suture wing for securing the port within a port pocket.
Abstract:
The present invention provides catheter compositions that provide anti-thrombogenic properties while not adversely impacting mechanical properties. All embodiments of the present invention comprise a catheter that comprises a fluoropolymer additive with specific compositions and/or purity levels.
Abstract:
A catheter that comprises a hub, an elongated conduit, and at least one lumen therein. The lumen includes a proximal lumen section, a distal lumen section, and an intermediate lumen section extending between the proximal and distal lumen sections. The cross-sectional dimension of the intermediate lumen section is less than the cross-sectional dimension of the distal lumen section. In one embodiment, the cross-sectional dimension of the intermediate lumen section is less than the cross-sectional dimension of the proximal lumen section. In certain embodiments, the lumen tapers from the dial and/or proximal lumen sections to the intermediate lumen section.
Abstract:
An implantable access port for use in transferring a fluid transdermally between an external fluid storage or dispensing device and a site within a patient's body is disclosed. The access port includes a base, a bowl-shaped reservoir defined within the base by a smooth surfaced wall, and a septum secured to the base and enclosing the reservoir within the base. The access port also has an outlet passageway defined within the base and extending in communication with a reservoir outlet defined within the reservoir and an external opening defined in the exterior of the base.
Abstract:
This disclosure contains methods, devices, and systems for object removal from a body, including removal of a stent from a body. Some methods of the present disclosure include inflating a balloon on a catheter, engaging a stent with a socket defined by a surface of the balloon, the surface inwardly sloped toward a lumen of the catheter, and retracting a portion of the stent through the socket and into the lumen. The present disclosure also includes methods for making a catheter, including forming a balloon, inverting a portion of the balloon, and attaching the balloon to a catheter such that a surface of the balloon defines a socket that is inwardly sloped toward a lumen of the catheter.
Abstract:
A method for capturing dislodged vegetative growth during a surgical procedure is provided. The method includes maneuvering, into a circulatory system, a first cannula having a distal end and an opposing proximal end, such that the first cannula is positioned to capture the vegetative growth en bloc. A second cannula is positioned in fluid communication with the first cannula, such that a distal end of the second cannula is situated in spaced relation to the distal end of the cannula. A suction force is provided through the distal end of the first cannula so as to capture the vegetative growth. Fluid removed by the suction force is reinfused through the distal end of the second cannula. Subsequent to becoming dislodged, the vegetative growth is captured by the first cannula. A method for capturing a vegetative growth during removal of a pacemaker lead is also provided.
Abstract:
The present disclosure relates to systems and methods for removing obstructions or occlusions from vascular and non-vascular passageways. More particularly, the present disclosure relates to systems and methods for en bloc removal of soft fresh thrombi and large emboli within the circulatory system and reinfusing fluid back into the patient to minimize fluid loss.