摘要:
A semiconductor structure and a method of fabricating the same are provided. A substrate having a metal-oxide-semiconductor transistor is provided. The metal-oxide-semiconductor transistor includes a gate, a source/drain extended region, a first spacer, a liner, a source/drain and a metal silicide layer. A portion of the first spacer is removed to form a second spacer by performing an etching process. A contact etching stop layer is formed over the substrate.
摘要:
A method for fabricating a semiconductor structure is described. A substrate is provided, having thereon a gate structure and a spacer on the sidewall of the gate structure and having therein an S/D extension region beside the gate structure. An opening is formed in the substrate beside the spacer, and then an S/D region is formed in or on the substrate at the bottom of the opening. A metal silicide layer is formed on the S/D region and the gate structure, and then a stress layer is formed over the substrate.
摘要:
A semiconductor device is provided herein, which includes a substrate having a first-type MOS transistor, an input/output (I/O) second-type MOS transistor, and a core second-type MOS transistor formed thereon. The semiconductor device further includes a first stress layer and a second stress layer. The first stress layer is disposed on the first-type MOS transistor, or on the first-type MOS transistor and the I/O second-type MOS transistor. The second stress layer is disposed on the core second-type MOS transistor.
摘要:
A semiconductor structure is disclosed, including a substrate having therein a first well of a first conductivity type and a second well of a second conductivity type, a first MOS transistor of the first conductivity type and a second MOS transistor of the second conductivity type. The first MOS transistor is disposed on the second well, including a gate structure on the second well and a strained layer of the first conductivity type in an opening in the second well beside the gate structure. The difference between the cell parameter of a portion of the strained layer near the bottom of the opening and that of the substrate is less than the difference between the cell parameter of a portion of the strained layer apart from the bottom of the opening and that of the substrate. The second MOS transistor is disposed on the first well.
摘要:
A method of manufacturing a metal-oxide-semiconductor (MOS) transistor device is disclosed. A gate dielectric layer is formed on an active area of a substrate. A gate electrode is patterned on the gate dielectric layer. The gate electrode has vertical sidewalls and a top surface. A liner is formed on the vertical sidewalls of the gate electrode. A nitride spacer is formed on the liner. An ion implanted is performed to form a source/drain region. After salicide process, an STI region that isolates the active area is recessed, thereby forming a step height at interface between the active area and the STI region. The nitride spacer is removed. A nitride cap layer that borders the liner is deposited. The nitride cap layer has a specific stress status.
摘要:
A method of fabricating strained-silicon transistors includes providing a semiconductor substrate, in which the semiconductor substrate includes a gate, at least a spacer, and a source/drain region; performing a first rapid thermal annealing (RTA) process; removing the spacer and forming a high tensile stress film over the surface of the gate and the source/drain region; and performing a second rapid thermal annealing process.
摘要:
First, a substrate having a plurality of NMOS transistor regions and PMOS transistor regions is provided. The substrate further includes a plurality of gate structures respectively positioned in the NMOS transistor regions and the PMOS transistor regions. A high-tensile thin film is then formed on the substrate and the plurality of gate structures. Subsequently, an annealing process is performed, and the high-tensile thin film is removed after the annealing process.
摘要:
A method of fabricating semiconductor devices is provided. A plurality of gate structures is formed over a substrate. A source region and a drain region are formed in the substrate and adjacent to sidewalls of each gate structure. A self-aligned salicide block (SAB) layer is formed over the substrate to cover the gate structures and the exposed surface of the substrate. An anneal process is performed. The SAB layer creates a tension stress during the anneal process so that the substrate under the gate structures is subjected to the tension stress. A portion of the SAB layer is removed to expose a portion of the gate structures and a portion of the surface of the substrate. A salicide process is performed.
摘要:
A flash memory cell includes a first conductive type substrate, a stacked gate structure, a first conductive type source/drain region, a metal silicide layer, an inter-layer dielectric layer and a contact plug. The first conductive type substrate has a second conductive type shallow well already formed thereon. The metal silicide layer is disposed within the first conductive type drain region. The contact plug is disposed within the inter-layer dielectric layer and electrically connected with the metal silicide layer in the first conductive type drain region to reduce resistance between the contact plug, the first conductive type drain region and the second conductive type shallow well and increase read-out speed of the flash memory.
摘要:
A predetermined voltage is applied respectively on a first gate of a first metal-oxide semiconductor (MOS) transistor with a known channel length and a second gate of a second MOS transistor with an unknown channel length. A first inverse gate leakage current of the first MOS transistor and a second inverse gate leakage current of the second MOS transistor are then measured. By using the first and second inverse gate leakage currents, the channel widths of the first and the second gates, the channel length of the first gate and an equation, the channel length of the second gate is obtained.