摘要:
A liquid chemical for forming a water-repellent protective film, containing: a water-repellent protective film forming agent for forming a water-repellent protective film on a wafer having at its surface an uneven pattern and containing at least one kind of element selected from titanium, tungsten, aluminum, copper, tin, tantalum and ruthenium at surfaces of recessed portions of the uneven pattern, the protective film being formed at least on the surfaces of the recessed portions by retaining the liquid chemical at least on the recessed portions of the wafer before a rinsing treatment step of rinsing the wafer surface with a rinsing liquid consisting only of a protic polar solvent or a rinsing liquid containing a protic polar solvent as the principal component; and a solvent. The water-repellent protective film forming agent is at least one kind of compound represented by the following general formulas [1] to [3].
摘要:
An electrolyte for non-aqueous electrolyte battery containing at least one compound selected from the group consisting of lithium difluoro(bis(oxalato))phosphate, lithium tetrafluoro(oxalato)phosphate and lithium difluoro(oxalato)borate as a first compound and at least one siloxane compound represented by the general formula (1) or the general formula (2) as a second compound in the electrolyte is disclosed. In addition to the improvement of initial characteristic, this electrolyte shows a tendency that storage stability, low temperature characteristic, etc. are superior, and exhibits well-balanced, superior, performances as a whole battery.
摘要:
A production method of 1-chloro-3,3,3-trifluoropropene according to the present invention includes reaction of 1,1,1,3,3-pentachloropropane with hydrogen fluoride, characterized in that the concentrations of respective catalytic components in the 1,1,1,3,3-pentachloropropane as the raw material is controlled to a predetermined level or less. By controlling the concentrations of the respective catalytic components in the 1,1,1,3,3-pentachloropropane to the predetermined level or less, it is possible to improve the problems of shortening of catalyst life, retardation of reaction and scaling or corrosion of equipment in the production of the 1-chloro-3,3,3-trifluoropropene. In addition, the 1,1,1,3,3-pentachloropropane can be obtained selectively with high yield by telomerization reaction of carbon tetrachloride and vinyl chloride. The present invention is thus useful as the method for industrially advantageous, high-yield production of the 1-chloro-3,3,3-trifluoropropene.
摘要:
Disclosed is a process for producing 1,2-dichloro-3,3,3-trifluoropropene, which is characterized by that 1-halogeno-3,3,3-trifluoropropene represented by the general formula [1]: (In the formula, X represents a fluorine atom, chlorine atom or bromine atom.) is reacted with chlorine in a gas phase in the presence of a catalyst. It is possible by this process to produce 1,2-dichloro-3,3,3-trifluoropropene in an industrial scale with good yield by using 1-halogeno-3,3,3-trifluoropropene, which is available with a low price, as the raw material.
摘要:
A production method of cis-1,3,3,3-tetrafluoropropene according to the present invention includes the steps of: subjecting 1,1,1,3,3-pentafluoropropane to dehydrofluorination to form a reaction mixture (A) containing cis-1,3,3,3-tetrafluoropropene, trans-1,3,3,3-tetrafluoropropene and unreacted 1,1,1,3,3-pentafluoropropane; distilling the reaction mixture (A) to separate the trans-1,3,3,3-tetrafluoropropene from the reaction mixture (A) and collect a reaction mixture (B) containing the cis-1,3,3,3-tetrafluoropropene and the 1,1,1,3,3-pentafluoropropane; and reacting the reaction mixture (B) with a base and thereby obtaining the cis-1,3,3,3-tetrafluoropropene from the reaction mixture (B). This production method enables efficient production of high-purity cis-1,3,3,3-tetrafluoropropene and thus has industrial advantages.
摘要:
Disclosed is a process for producing 2-chloro-1,3,3,3-tetrafluoropropene (1224), including a first step of separating 2,3-dichloro-1,1,1,3-tetrafluoropropane 234da) into erythro form and threo form, and a second step of bringing the separated erythro form or threo form in contact with a base to obtain 2-chloro-1,3,3,3-tetrafluoropropene (1224). The first step is a step of separating 234da by distillation to achieve a separation into a fraction containing mainly erythro form and a fraction containing mainly threo form. In the second step, 1224 cis form is obtained from the erythro form, and 1224 trans form is obtained from the threo form. By this process, it is possible to selectively and efficiently produce cis form or trans form of 2-chloro-1,3,3,3-tetrafluoropropene (1224).
摘要:
A production method of 1-chloro-3,3,3-trifluoropropene according to the present invention includes bringing a raw material composition containing 1,3,3,3-tetrafluoropropene and an acid composition containing hydrogen chloride into contact with each other in gas phase in the presence of a catalyst. This production method allows not only use of hydrogen chloride containing hydrogen fluoride, which has been generated during a preceding step (production of 1,1,1,3,3-pentafluoropropane as a raw material or analogues thereof), but also use of any of trans and cis isomers of the 1,1,1,3,3-pentafluoropropane for production of the 1-chloro-3,3,3-trifluoropropene. It is thus possible to efficiently produce the 1-chloro-3,3,3-trifluoropropene, which is known as an environment-adaptive chlorofluorocarbon. As the catalyst, preferred is an alumina catalyst treated by contact with hydrogen fluoride.
摘要:
Disclosed herein is a method for preparing a liquid chemical for forming a water-repellent protective film, the liquid chemical being for forming the water-repellent protective film at the time of cleaning a wafer having at its surface an uneven pattern and containing silicon element at least at a part of the uneven pattern at least on surfaces of recessed portions of the uneven pattern, the liquid chemical containing a nonaqueous organic solvent, a silylation agent, and an acid or a base. The method includes (i) adjusting a water content of the nonaqueous organic solvent to 200 mass ppm or less by dehydration; and (ii) mixing the nonaqueous organic solvent, the silylation agent, and the acid or the base after the adjusting step.
摘要:
A silicon compound according to the present invention is represented by the general formula (1). This silicon compound can be easily synthesized by using a hydrolysable silicon compound such as alkoxysilane and has, in its molecule, a hydrolysable group e.g. alkoxy group and a photoacid generating group capable of being dissociated to generate an acid by irradiation with a high-energy ray. R1nAmSiB4-(n+m) (1) where R1 is each independently a hydrogen atom, a C1-C20 straight or C3-C20 branched or cyclic hydrocarbon group; a carbon atom of the hydrocarbon group may be replaced by an oxygen atom; and the hydrocarbon group may contain a fluorine atom; A is an acid decomposable group; B is a hydrolysable group; n is an integer of 0 to 2; m is an integer of 1 to 3; and n+m is an integer of 1 to 3.
摘要:
The invention relates to a gas for removing deposits by a gas-solid reaction. This gas includes a hypofluorite that is defined as being a compound having at least one OF group in the molecule. Various deposits can be removed by the gas, and the gas can easily be made unharmful on the global environment after the removal of the deposits, due to the use of a hypofluorite. The gas may be a cleaning gas for cleaning, for example, the inside of an apparatus for producing semiconductor devices. This cleaning gas comprises 1-100 volume % of the hypofluorite. Alternatively, the gas of the invention may be an etching gas for removing an unwanted portion of a film deposited on a substrate. The unwanted portion can be removed by this etching gas as precisely as originally designed, due to the use of a hypofluorite. The invention further relates to a method for removing a deposit by the gas. This method includes the step (a) bringing the gas into contact with the deposit, thereby to remove the deposit by a gas-solid reaction.