Abstract:
Disclosed herein is an image display device having a plurality of light emitting diodes (LEDs), which can maintain a primary color which is desired to be expressed, and prevent an interference of other unwanted colors and a change of the primary color at the time of application of a light source of each light emitting diode. The image display device comprises: a first optical filter layer containing a violet wavelength-absorbing material having a wavelength range of from 380 nm to 450 nm such as Bi2O3 so as to prevent light having a wavelength ranging from 380 nm to 450 nm from being leaked out to an undesired region of an image display portion of the image display device; and a second optical filter layer such as a blue color filter layer so as to allow a white light to be expressed in a desired region of the image display portion.
Abstract translation:本文公开了一种具有多个发光二极管(LED)的图像显示装置,其可以保持期望表达的原色,并且防止其它不需要的颜色的干扰和原色的变化 应用每个发光二极管的光源。 图像显示装置包括:包含波长范围为380nm至450nm的紫色波长吸收材料的第一光学滤光层,例如Bi 2 O 3 3,因此 以防止具有380nm至450nm波长的光被泄漏到图像显示装置的图像显示部分的不期望的区域; 以及第二滤光器层,例如蓝色滤色器层,以便允许在图像显示部分的期望区域中表达白光。
Abstract:
Disclosed is a transparent carbon nanotube (CNT) electrode using a conductive dispersant. The transparent CNT electrode comprises a transparent substrate and a CNT thin film formed on a surface the transparent substrate wherein the CNT thin film is formed of a CNT composition comprising CNTs and a doped dispersant. Further disclosed is a method for producing the transparent CNT electrode.The transparent CNT electrode exhibits excellent conductive properties, can be produced in an economical and simple manner by a room temperature wet process, and can be applied to flexible displays. The transparent CNT electrode can be used to fabricate a variety of devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays and touch screen panels, that are required to have both light transmission properties and conductive properties.
Abstract:
A method of preparing crystalline graphene includes performing a first thermal treatment including supplying heat to an inorganic substrate in a reactor, introducing a vapor carbon supply source into the reactor during the first thermal treatment to form activated carbon, and binding of the activated carbon on the inorganic substrate to grow the crystalline graphene.
Abstract:
Provided are a process for economically preparing a graphene shell having a desired configuration which is applicable in various fields wherein in the process the thickness of the graphene shell can be controlled, and a graphene shell prepared by the process.
Abstract:
A graphene laminate including a substrate, a binder layer on the substrate, and graphene on the binder layer, wherein the graphene is bound to the substrate by the binder layer.
Abstract:
A graphene-on-substrate includes a substrate, a first intermediate layer disposed on the substrate, and graphene disposed on the first intermediate layer, where the first intermediate layer comprises a material having an intermediate polarity value between a polarity of the substrate and a polarity of the graphene.
Abstract:
Disclosed is a dispersant having a multifunctional head, and a phosphor paste composition comprising the dispersant. The dispersant has a multifunctional head that comprises an acidic group, a basic group and an aromatic group, thereby enhancing an affinity for the surface of phosphor particles and improving dispersibility.
Abstract:
A compound containing at least two pyridinium derivatives in its molecular structure and being in a reduced form thereof may be used as a CNT n-doping material. The compound may donate electrons spontaneously to CNTs to n-dope the CNTs, while being oxidized into its stable state. An n-doped CNT that is doped with the CNT n-doping material may maintain a stable n-doped state for a long time without being dedoped even in the air and/or water. Further, the n-doped state may be easily controlled when using the CNT n-doping material.
Abstract:
Provided are a graphene sheet and a process of preparing the same. Particularly, a process of economically preparing a large-area graphene sheet having a desired thickness and a graphene sheet prepared by the process are provided.