Abstract:
A cushion for a respiratory mask assembly includes a breathing chamber forming portion and a face contacting portion formed in one piece of an elastomeric material, and a gusset portion including one or more folds. The breathing chamber forming portion includes a mask interior breathing chamber and the face contacting portion is structured to engage a patient's face. The gusset portion is structured to provide flexibility to the face contacting portion. The breathing chamber forming portion includes a front side of the mask and the face contacting portion includes a rear side of the mask. The breathing chamber forming portion, when provided to a mask frame, includes an exterior surface exposed at the front side of the mask.
Abstract:
A mask system for use between a patient and a device to deliver a breathable gas to the patient includes a mouth cushion, a pair of nasal prongs, an elbow, and a headgear assembly. The mouth cushion is structured to sealingly engage around an exterior of a patient's mouth in use, and the pair of nasal prongs are structured to sealingly communicate with nasal passages of a patient's nose in use. The elbow delivers breathable gas to the patient. The headgear assembly maintains the mouth cushion and the nasal prongs in a desired position on the patient's face. The headgear assembly provides a substantially round crown strap that cups the parietal bone and occipital bone of the patient's head in use.
Abstract:
A mask (10) for use with a system for supplying breathable gas pressurized above atmospheric pressure to a human or animal's airways. The mask (10) includes a mask shell (12) which is, in use, in fluid communication with a gas supply conduit (30), and a gas washout vent assembly (20). At least the region of the mask shell (12) or conduit (30) surrounding or adjacent the vent assembly is formed from a relatively flexible elastomeric material.
Abstract:
A full-face cushion (30B) comprises a substantially triangularly shaped frame (32) from which extends a membrane (34). The frame (32) has a scalloped edge (36) by which the cushion (30B) is affixed to a mask body (46) to form a full-face mask (60B). The membrane (34) has an aperture (38) into which the wearer's nose is received. The member (34) is spaced away from the rim (40) of the frame (32), and its outer surface (41) is of substantially the same shape as the rim (40). Respective notches (42, 44) receive the bridge of the wearer's nose. The wearer's nose and lips are received through the aperture (38) into the chamber within the mask body (46). The seal forming portion (45) thus contacts both the surface of the wearer's nose and a portion of the wearer's face in the region between the bottom lip and the chin, and around the sides and over the bridge of the nose. The shape of the seal forming portion (45) is particularly suited to effectively seal the difficult region of the facial contour that is the crease between the sides of the nose and the face.
Abstract:
An air delivery system includes a controllable flow generator, a primary controller, and an auxiliary controller. The flow generator is operable to generate a supply of pressurized breathable gas to be provided to a patient for treatment. The primary controller is associated with at least one primary control feature to select at least a first aspect of operation of the flow generator. The auxiliary controller is associated with at least one auxiliary control feature to select at least a second aspect of operation of the flow generator. The second aspect selected by the auxiliary controller is different than the first aspect selected by the primary controller. The primary and auxiliary controllers may be interchangeably usable to control operation of the flow generator.
Abstract:
A respiratory mask includes a frame including a breathable gas port, wherein the frame defines an inner chamber to receive at least one of a wearer's nasal region and mouth, and a cushion including a flange connected to the frame, an inner rim defining an opening to the inner chamber of the frame, and a sealing portion disposed between the flange and the inner rim to contact the wearer's face. The sealing portion includes a nasal seal section to span a wearer's face above the wearer's nares, side seal sections extending from each side of the nasal seal section on both sides of the wearer's mouth, and a chin seal section that extends between the side seal sections, wherein the chin seal section is upwardly curved in an arch to follow the chin's bony contour.
Abstract:
A cushion for a respiratory mask assembly includes a breathing chamber forming portion and a face contacting portion formed in one piece of an elastomeric material, and a gusset portion including one or more folds. The breathing chamber forming portion includes a mask interior breathing chamber and the face contacting portion is structured to engage a patient's face. The gusset portion is structured to provide flexibility to the face contacting portion. The breathing chamber forming portion includes a front side of the mask and the face contacting portion includes a rear side of the mask. The breathing chamber forming portion, when provided to a mask frame, includes an exterior surface exposed at the front side of the mask.
Abstract:
A method and apparatus for delivering breathable gas to a user includes a humidifying unit that is controllable to humidify the gas in accordance with a variable humidity profile such that the gas is delivered to the user at variable humidity levels, e.g., during a treatment session.
Abstract:
Components of a CPAP or other patient ventilation apparatus have a remotely-readable identification tag encoded with component identification. data. The flow generator controller is programmed to receive data derived from the identification tag from a tag reader, and to adapt functions of the flow controller to coordinate with the component.
Abstract:
A mask fitting system (1) for selecting a mask system for a patient includes at least one terminal (6) which receives data unique to a patient. The patient data can be scanned in using a scanner, such as a handheld or 3-D scanner, or the relevant dimensions of the patient can be simply input into the terminal. A database (2) is provided to store mask system data relating to a plurality of potential mask system solutions for the patient. A communication channel (4) is provided by which the data received by the terminal can be compared with mask system data stored in a mask system database, so as to generate a best-fit mask system result. The best-fit result may include one or more mask system recommendations for the patient.