Abstract:
An information storage array includes a programmable material at a storage location and a capacitor set. A switching network charges the capacitor set to a first voltage and discharges the capacitor set at a second voltage. The second voltage is greater than the first voltage and it or a waveform derived therefrom is applied to the storage location to thereby change a state of the programmable material.
Abstract:
A memory device includes a memory array comprising a plurality of storage locations disposed above a plurality of generally parallel lines, where each storage location comprises a programmable material disposed on a sidewall of a conductive element.
Abstract:
The invention concerns in one embodiment a method of treating glaucoma or elevated intraocular pressure comprising administering a pharmaceutically effective amount of a composition comprising at least one prenyltransferase inhibitor. In another embodiment, the invention concerns a composition for the treatment of elevated intraocular pressure and glaucoma comprising a pharmaceutically effective amount of a prenyltransferase inhibitor.
Abstract:
A memory-array decoder operably coupled to a memory array comprising a sequence of rows and receiving as input a plurality of address bits includes first and second decoder stages. The first decoder stage selects one or more first rows by decoding a first subset of the address bits, and the second decoder stage selects one or more second rows based on locations, within the sequence, of one or more third rows different from the one or more second rows.
Abstract:
The scale of the devices in a diode array storage device, and their cost, are reduced by changing the semiconductor based diodes in the storage array to cold cathode, field emitter based devices. The field emitters and a field emitter array may be fabricated utilizing a topography-based lithographic technique.
Abstract:
One of the simplest forms of data storage devices is the diode array storage device. However, a problem with diode array storage devices is that as the size of the array increases, the number of non-addressed diodes connected between a given selected row or column of the array and the non-addressed columns or rows of the array, respectively, also becomes very large. While the leakage current through any one non-addressed diode on the selected row or column will have little impact on the operation of the device, the cumulative leakage through multiple thousands of non-addressed diodes can become significant. This aggregate leakage current can become great enough that the output voltage can be shifted such that the threshold for distinguishing between a one state and a zero state of the addressed diode location can become obscured and can result in a misreading of the addressed diode location. The present invention is a means to manage the leakage currents in a diode array storage device. This is accomplished by actively changing the forward voltage of the diodes in the storage array such that a diode connected to the selected row line but that is not connected to the selected column line is in its high impedance state and a diode connected to the selected column line but that is not connected to the selected row line is in its high impedance state; only a diode that is connected to both the selected row line and the selected column line will switch to its low impedance state. The present invention is an enhancement to all types of arrays of diodes or arrays of other nonlinear conducting elements including: storage devices, programmable logic devices, display arrays, sensor arrays, and many others.
Abstract:
In various embodiments, an electronic circuit includes an array of locations each corresponding to an intersection of a row and a column, and a plurality of devices each disposed proximate one of the locations, wherein no more than ten contiguous locations lack a proximate device.
Abstract:
RNA interference is provided for inhibition of ocular hypertension target mRNA expression for lowering elevated intraocular pressure in patients with open-angle glaucoma or ocular hypertension. Ocular hypertension targets include carbonic anhydrase II, IV, and XII; β1- and β2 adrenergic receptors; acetylcholinesterase; Na+/K+-ATPase; and Na—K-2Cl cotransporter. Ocular hypertension is treated by administering interfering RNAs of the present invention.
Abstract translation:提供RNA干扰用于抑制眼高血压靶mRNA表达,以降低开角型青光眼或高眼压患者的眼内压升高。 眼睛高血压指标包括碳酸酐酶II,IV和XII; β1-和β2肾上腺素能受体; 乙酰胆碱酯酶; Na + / K + -ATPase; 和Na-K-2Cl共转运蛋白。 通过施用本发明的干扰RNA来治疗眼高血压。
Abstract:
Fabrication of microelectronic devices is accomplished using a substrate having a recessed pattern. In one approach, a master form is used to replicate a substrate having a pit pattern. In another approach, the substrate is produced by etching. A series of stacked layers having desired electrical characteristics is applied to the substrate and planarized in a manner that creates electrical devices and connections therebetween. The microelectronic devices can include a series of row and columns and are used to store data at their intersection.
Abstract:
A communication technique enables the efficient transmission of data through a low bandwidth and/or time delayed communication link and minimizes the idle time of the communication link by using a deferred acknowledgment of message bundles to temporally pack the communication link. The transmitting system stores messages to be transmitted in a pending message queue and applies a dynamic window to the pending message queue to define a message bundle to be sent through the slow communication link. The transmitting system requests an acknowledgment for at least one message within the bundle, but does not require an acknowledgment for every message within the bundle. Transmitted messages are temporarily stored as outstanding messages in a retransmission queue until the transmitted messages are acknowledged or until a time-out period associated with the messages has lapsed. When the transmitting station receives a timely acknowledgment in response to a requested acknowledgment, the transmitting station removes all outstanding messages associated with that acknowledgment from the retransmission queue.