Abstract:
A system and method for controlling the regeneration of an exhaust gas particulate filter. When regeneration is initiated, an outlet temperature of an exhaust gas oxidation catalyst and an outlet temperature of the exhaust gas particulate filter are detected. As part of a closed loop non-linear temperature targeting regime, the maximum of the outlet temperature of the exhaust gas oxidation catalyst and the outlet temperature of the exhaust gas particulate filter is set as a reference temperature. A regeneration temperature target is initialized and indexed based on a profile time and the reference temperature. As part of a closed loop fuel control regime at least one hydrocarbon dosing value is determined based on an exhaust mass flow, the reference temperature, and the regeneration temperature target.
Abstract:
An exhaust treatment device includes an inner shell, an outer shell and insulation material positioned between the inner shell and the outer shell. An inlet tube has an end in communication with a cavity defined by the inner shell. A substrate for treating engine exhaust is positioned within the inner shell. A baffle plate includes a plurality of apertures positioned such that the exhaust passes through the apertures prior to entering the substrate. The baffle plate supports an end of the inner shell and the inlet tube.
Abstract:
A shock absorber has a housing with a piston rod assembly disposed therein. A first rod guide member is secured within a first portion of the housing so as to be concentrically disposed about at least a portion of the piston rod assembly. A second rod guide member is secured within the housing adjacent the first rod guide member so as to be concentrically disposed about at least another portion of the piston rod assembly. An electronically controlled valve assembly is disposed within the second rod guide member and is in communication with the first rod guide member.
Abstract:
A shock absorber may include a piston rod, a first rod guide member, a second rod guide member, and an electronically controlled valve assembly. The first rod guide member is concentrically disposed about the piston rod, and the second rod guide member is concentrically disposed about the piston rod and is adjacent the first rod guide member. The electronically controlled valve assembly may include a coil assembly and a valve guide assembly. The valve guide assembly may be disposed adjacent to the coil assembly and may be concentrically disposed about the second rod guide member. The valve guide assembly includes a spool and defines a valve inlet, a valve outlet, and a chamber. The spool is disposed within the chamber and controls the flow of fluid between the valve inlet and the valve outlet.
Abstract:
An exhaust aftertreatment system for an engine is provided that includes a burner, an air supply system and a control module. The air supply system may be in fluid communication with the burner and may include an air compressor disposed upstream from the burner. The air compressor may include a pump mechanism, a clutch assembly selectively transferring torque from the engine to the pump mechanism, and a motor selectively driving the pump mechanism. The control module may be in communication with the clutch assembly and the motor. The control module may selectively switch the air compressor between a first operating mode in which the clutch assembly transfers torque from the engine to the pump mechanism and a second operating mode in which the motor drives the pump mechanism.
Abstract:
A damper system for a vehicle includes a shock absorber and a damper module. The shock absorber includes a plurality of digital valves. The shock absorber is operable at one of multiple damping states based on a valve state of the digital valves. The damper module is coupled to each of the digital valves and controls each of the digital valves to a desired state based on a damper setting. The damper module determines a target damping state, where the target state is one of the multiple damping states. The damper module performs a switch operation to control the valve state of the plurality of digital valves to a given desired state when the target damping state is different from a present damping state.
Abstract:
An exhaust aftertreatment system may include a first housing and a burner. The first housing may include first and second chambers. The first chamber may include an exhaust gas inlet receiving exhaust gas from an engine. The second chamber may receive exhaust gas from the first chamber and may include an exhaust gas outlet. The burner may include a second housing and a combustion chamber disposed within the second housing. The second housing may be at least partially disposed within the first chamber. The burner may supply heated gas to the second chamber. The heated gas within the burner may be fluidly isolated from exhaust gas in the first chamber. The second housing may be in a heat transfer relationship with exhaust gas in the first chamber.
Abstract:
An exhaust treatment system may include a burner, a flame sensor assembly and a control module. The flame sensor assembly may be at least partially disposed within the burner and may include an insulator and an electric heating element in heat transfer relation with the insulator. The control module may be in communication with the flame sensor assembly. The control module may determine whether a flame is present in a combustion chamber based on feedback from the flame sensor assembly. The control module may detect contamination on the insulator based on feedback from the flame sensor assembly. The control module may operate the heating element in a first mode in response to detection of a contamination in which the control module causes electrical power to be applied to the heating element to raise a temperature of the heating element to burn contamination off of the insulator.
Abstract:
A hydraulic actuator includes a shock absorber and a control system that is separate from the shock absorber and which generates damping loads for the hydraulic actuator. The control system generates the damping load by using a pair of variable valves, a pair of check valves, an accumulator, a pump/motor and a flow controller. The forces are generated in all four quadrants of compression/rebound and active/passive. A device which recuperates the energy generated by the hydraulic actuator can be incorporated into the hydraulic actuator to generate energy in the form of electrical energy.
Abstract:
An exhaust gas treatment system for reducing emissions from an engine includes an exhaust conduit adapted to supply an exhaust stream from the engine to an exhaust treatment device. The conduit includes an aperture. An injector injects a reagent through the aperture and into the exhaust stream. A flow modifier is positioned within the exhaust conduit upstream of the injector. The flow modifier includes a diverter for increasing the velocity of the exhaust gas at a predetermined location within the conduit relative to the injected reagent.