Abstract:
An organic light emitting device and a method of manufacturing the same, the organic light emitting device includes a first electrode, a second electrode, and an organic layer that has at least a multi-coated emissive layer and which is interposed between the first and second electrodes. The multi-coated emissive layer is a single layer composed of a neutral emissive material and an no−ne parameter of the emissive layer is greater than an no−ne parameter of a single-coated layer. The organic light emitting device has a longer lifetime and high efficiency.
Abstract:
A blue electroluminescent polymer having a phenoxazine-based unit in a polyarylene backbone and an organic electroluminescent device using the polymer. The organic electroluminescent device has improved luminous efficiency and color purity.
Abstract:
An organic light emitting device includes a first electrode, a hole injection layer, an inorganic layer, a hole transport layer, an emitting layer which are sequentially formed on the first electrode; and a second electrode. The organic light emitting device has a high emission efficiency and an extended lifetime.
Abstract:
The present invention relates to an organic luminescent material/clay nanocomposite with improved luminescent efficiency and stability, which is prepared by blending an organic luminescent material with a nanoclay, and an electroluminescent device employing the same. The electroluminescent device of the invention comprises: a transparent substrate; a semitransparent electrode deposited on the transparent substrate; a clay nanocomposite emissive layer spin-coated with an organic EL material/clay nanocomposite, positioned on the semitransparent electrode; and, a metal electrode deposited on the clay nanocomposite emissive layer. Since the electroluminescent device of the invention provides improved luminescent efficiency and stability, it can be practically applied to the development of organic semi-conductor.
Abstract:
The present invention provides ionomer-type emissive polymer whose heat-stability is improved by the formation of ionic cross-link, and electroluminescent device employing the same as an emissive layer. The ionomer-type emissive polymer is characterized by an ionomeric conformation, which has a backbone in a conjugate, non-conjugate or conjugate/non-conjugate multi-block conformation with or without a side chain in a conjugate or non-conjugate conformation, and 0.1 to 15% (mol/mol) of ions bound to the backbone or side chain of the emissive polymer with or without linker. The electroluminescent diode employing ionomer-type emissive polymer can be applied to the preparation of long-life and electricity-saving electroluminescent display device since it can luminesce at low voltage due to its ionomeric conformation and have higher heat-stability than the conventional ones.
Abstract:
A semiconductor memory device includes a plurality of memory cells each having a single transistor and a single capacitor on a semiconductor substrate. The capacitor has a storage electrode with an externally communicated box-type tunnel in its center, one portion of the storage electrode being connected to the source region of the transistor. A method for manufacturing the semiconductor memory device is also provided. Thus, storage capacity is raised by increasing the effective area of the capacitor, and the planarizing effect is also excellent.
Abstract:
A wastewater evaporation system includes a plurality of tube sections configured to direct compressed air into the wastewater. A portion of the manifold defines an injection head configured to be at least partially submerged below a surface of the wastewater. The wastewater evaporation system also includes an air compressor configured to direct the compressed air to the manifold. The wastewater evaporation system also includes a buoy system coupled to the manifold. The buoy system includes a buoy configured to maintain a portion of the manifold above the surface of the wastewater.
Abstract:
There is provided a recombinant microorganism having producibility of poly(lactate-co-glycolate) from glucose, and more particularly, a recombinant microorganism having producibility of poly(lactate-co-glycolate) without adding an exogenous glycolate precursor, and a method of preparing [poly(preparing lactate-co-glycolate)] using the same. According to the present invention, the poly(lactate-co-glycolate) in which the concentration of the glycolate fraction is high may be prepared at a high concentration without supplying exogenous glyoxylate. Therefore, the present invention may be effectively used for treatment.
Abstract:
Provided are a conducting polymer composition and an electronic device including a layer formed using the conducting polymer composition. The conducting polymer composition contains: at least one compound selected from the group consisting of a siloxane compound of formula (1) below, a siloxane compound of formula (2) below, and a silane compound of formula (3) below; and a conducting polymer: where R1, R2, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, D, p, m, q, and r are the same as described in the detailed description of the invention. The electronic device including a layer formed using the conducting polymer composition has excellent electroluminescent characteristics and long lifetime.
Abstract:
An organic light emitting device (OLED) and a method of manufacturing the OLED. The OLED includes an anode, a cathode, a hole transport layer arranged between the anode and the cathode, a self-buffer layer arranged between the hole transport layer and the cathode, the self-buffer layer being adapted to protect the hole transport layer, the self-buffer layer being made of a first material and a light emitting layer arranged between the self-buffer layer and the cathode, the light emitting layer also being made of the first material.