Abstract:
The present invention provides a polytetrafluoroethylene molded article, particularly a PTFE molded article for high-frequency insulation, which is excellent in various electric properties and mechanical properties in a high frequency range of 3 to 30 GHz. The present invention also provides PTFE fine powder, which is excellent in extrusion moldability and capable of providing the molded article, and a process for preparing the same. More specifically, the present invention relates to a polytetrafluoroethylene fine powder having a standard specific gravity of 2.180 to 2.225, which is obtained by contacting polytetrafluoroethylene fine powder having a standard specific gravity of 2.180 to 2.225 with a fluorine radical source, wherein tanδ at 12 GHz of a film comprising the powder, which is obtained by cooling at 5 to 50° C./second after baking, is at most 2.0×10−4.
Abstract:
An obstruct of this invention is to downsize a chamber, consequently a film forming system, to improve a film thickness distribution and to improve throughput of film forming by increasing the amount of the vaporized liquid precursor. The film forming system 1 is to form a film by vaporizing a liquid precursor and then depositing the vaporized liquid precursor on a substrate W, and comprises a chamber 2 inside of which the substrate W is held and multiple injection valves 3 that are arranged at different positions in the chamber 2 and that directly inject the identical liquid precursor in the chamber 2, vaporize the identical liquid precursor by flash boiling and then supply the vaporized liquid precursor.
Abstract:
The present invention provides a method of producing a fluoropolymer aqueous dispersion by which the fluorine-containing emulsifier contained in the fluoropolymer aqueous dispersion as obtained after polymerization can be efficiently removed as well as a fluoropolymer aqueous dispersion low in fluorine-containing emulsifier concentration. The present invention is a method of producing a fluoropolymer aqueous dispersion which comprises carrying out a concentration treatment comprising a concentration operation of a pretreatment fluoropolymer aqueous dispersion, wherein the pretreatment fluoropolymer aqueous dispersion is obtained by carrying out a polymerization in an aqueous medium in the presence of a fluorine-containing surfactant (A), the fluorine-containing surfactant (A) is a fluorine-containing surfactant having an octanol/water partition coefficient of 1.5 to 3.5.
Abstract:
The present invention provides a TFE resin molding material which has electric characteristics, particularly low dielectric dissipation factor, in a microwave area, can also lower extrusion pressure as the material is of low molecular weight and can provide a molded article excellent in surface smoothness. The material is especially useful as a coating material for a coaxial cable for equipment in which microwave is used, including satellite transmitting equipment and a cell phone base station. A tetrafluoroethylene resin molding material excellent in high frequency electric characteristics, which provides a molded article having a dielectric constant of at most 2.2 and a dielectric dissipation factor of at most 1.60×10−4 under 12 GHz, and a standard specific gravity of at least 2.192 and less than 2.3 is provided. As the tetrafluoroethylene resin, a tetrafluoroethylene homopolymer or a copolymer of 99.9 to 99.9999% by mole of tetrafluoroethylene and 0.0001 to 0.1% by mole of a specific fluoromonomer is used.
Abstract:
In a method for producing hollow fiber membranes which comprises melt kneading a mixture comprising polyvinylidene fluoride and an organic liquid or a mixture comprising polyvinylidene fluoride, an organic liquid and an inorganic fine powder, extruding the kneaded mixture to form hollow fibers, and extracting the organic liquid or the organic liquid and the inorganic fine powder from the hollow fibers, which includes the steps of drawing the hollow fibers before or after termination of the extraction and then shrinking the fibers. According to this method, it is possible to stably produce hollow fiber membranes having dense pores and having a high water permeation performance, excellent endurance and stain resistance, and which are suitable for filtration uses such as removal of turbidity of water.
Abstract:
To provide a suitable material having improved impermeability to liquid chemicals and cracking resistance while retaining excellent heat resistance and processability inherent in FEP-based fluororesins, a molded article of which is useful in the field of semiconductor production apparatus and the like. The present invention provides a fluorine-containing resin material comprising a fluorine-containing copolymer comprising 85 to 95.5% by mole of a repeating unit derived from tetrafluoroethylene, 5 to 10% by mole of a repeating unit derived from hexafluoropropylene and 0.1 to 5% by mole of a repeating unit derived from at least one higher perfluoro(vinyl ether) represented by the formula (1): CF2═CF—O—Rf1 (1) wherein Rf1 is a perfluoroalkyl group having 5 to 10 carbon atoms or a perfluoro(alkoxyalkyl) group having 4 to 17 carbon atoms, and molded article thereof.
Abstract:
There is provided a novel fluorine-containing polymer having an acid-reactive group which has a high transparency against energy rays (radioactive rays) in a vacuum ultraviolet region (157 nm), and further there are provided a material for fluorine-containing base polymer prepared from the polymer and suitable for a photoresist and a chemically amplifying type resist composition obtained therefrom. The polymer has a number average molecular weight of from 1,000 to 1,000,000 and represented by the formula: -(M1)-(M2)-(A)-, wherein M1 is a structural unit having an acid-labile or acid-degradable functional group, M2 is a structural unit of fluorine-containing acryl ester, A is a structural unit derived from other copolymerizable monomer, the percent by mole ratio M1/M2 is 1 to 99/99 to 1 and the polymer comprises from 1 to 99% by mole of the structural unit M1, from 1 to 99% by mole of the structural unit M2 and from 0 to 98% by mole of the structural unit A1. The material for fluorine-containing base polymer comprises a fluorine-containing polymer having an acid-reactive group such as the above-mentioned polymer and is suitable for a photoresist, and the chemically amplifying type resist composition is obtained from those polymer and material.
Abstract:
The present invention is to provide a laminated resin molding comprising a polyamide-based resin composition as an outer layer and being excellent in interlayer adhesion strength, in particular a laminated resin molding comprising a fluorine-containing resin as an inner layer.The present invention is a laminated resin molding which comprises a layer (A) comprising a polyamide-based resin composition and a layer (B) laminated to said layer (A), said layer (B) comprising a fluorine-containing ethylenic polymer having a carbonyl group, and said polyamide-based resin composition having a functional group, in addition to an amide group, selected from the group consisting of hydroxyl group, carboxyl group, ester group and sulfonamide group in a total amount of 0.05 to 80 equivalent percent relative to the amide group.
Abstract:
To provide a novel PFA-based fluorine-containing copolymer having improved impermeability to liquid chemicals while retaining the excellent heat resistance, stress cracking resistance and processability inherent in PFA-based fluororesins, a material and a molded article useful in the field of semiconductor production apparatus and the like, using the copolymer. The present invention provides a fluorine-containing copolymer comprising 90 to 99.4% by mole of a repeating unit derived from tetrafluoroethylene, 0.5 to 5% by mole of a repeating unit derived from at least one lower perfluoro(alkyl vinyl ether) represented by the formula (1): CF2═CF—O—Rf1 (1) in which Rf1 is a perfluoroalkyl group having 2 to 4 carbon atoms, and 0.1 to 5% by mole of a repeating unit derived from at least one higher perfluoro(vinyl ether) represented by the formula (2): CF2═CF—O—Rf2 (2) in which Rf2 is a perfluoroalkyl group having 5 to 10 carbon atoms or a perfluoro(alkoxy alkyl) group having 4 to 17 carbon atoms, wherein the fluorine-containing copolymer has a melt flow rate of 0.1 g/10 minutes to 100 g/10 minutes and melting point of 290° to 325° C., and a resin composition using the same.
Abstract:
A composite material having sliding property is produced by applying, to a substrate, a material comprising a fluorine-containing ethylenic polymer having functional group which is prepared by copolymerizing (a) 0.05 to 30% by mole of at least one of fluorine-containing ethylenic monomers having at least one functional group selected from the group consisting of hydroxyl, carboxyl, a carboxylic salt group, a carboxylic ester group and epoxy, and (b) 70 to 99.95% by mole of at least one of fluorine-containing ethylenic monomers having no functional group mentioned above. The composite material having sliding property which is produced by applying, to the substrate, the material comprising the fluorine-containing polymer having an excellent adhesive property to the substrate without necessitating complicated steps.