Abstract:
The present invention relates to a remote monitoring system and a method controlling the same, which can selectively monitor according to a condition of power and a control of devices including a washer and a dryer installed in a remote place. The remote monitoring system comprises a communication module provided in each device for transmitting monitoring information after identifying an operation condition of each device according to a user's demand; and a remote monitoring unit for selecting a device to be monitored based on a result after identifying a power condition of each device, as well as displaying an operation condition of each device based on the transmitted monitoring information and the control of each device.
Abstract:
An electronic device includes an interface unit; a processor configured to communicate with one other electronic device; where a message communicated between the electronic device and the other electronic device includes a message type field and a transmission counter field. The message type field indicates a type of the message. The transmission counter field indicates how many times the same message is transmitted, and a range of a value included in the transmission counter field is determined based on the type of the message indicated by the message type field. The interface unit receives a device information message from the other electronic device, and generates a profile for managing the other electronic device based on the device information message. The profile comprises at least one of a device information file containing specific information on the other electronic device, a node parameter file containing a node parameter designated for the other electronic device, a device operation file containing data on an operational state of the other electronic device, and a scenario file for defining supplementary services for the other electronic device.
Abstract:
A method of programming a nonvolatile semiconductor memory device using a negative bias voltage. The method includes turning ON the string selection transistors connected to selected bit lines and turning OFF the string selection transistors connected to unselected bit lines in the same memory block, in a program mode. This can be achieved by applying a negative bias voltage to a bulk substrate and applying a voltage having a voltage level higher than the threshold voltage of string selection transistors connected to selected bit lines and lower than the threshold voltage of string selection transistors connected to unselected bit lines. The method may reduce programming disturbance between a selected cell string and an unselected cell string.
Abstract:
A digital broadcasting stream transmitting method and a digital broadcasting stream receiving method and apparatus for providing three-dimensional (3D) video services are provided. The transmitting method including: generating a plurality of elementary streams (ESs) for a plurality of pieces of video information including at least one of information about a base-view video of a 3D video, information about an additional-view video corresponding to the base-view video, and a two-dimensional (2D) video having a different view from views of the 3D video; multiplexing the plurality of ESs with link information for identifying at least one piece of video information linked with the plurality of pieces of video information, to generate at least one transport stream (TS); and transmitting the generated at least one TS via at least one channel.
Abstract:
The present invention discloses a home network system using a living network control protocol. The home network system includes: at least one new device including a node address having an initial logical address through a network based on a predetermined protocol, transmitting a configuration request message having the node address to a master device, receiving a temporary address setting request message, changing the initial logical address by selecting one temporary logical address, generating a temporary address setting response message, transmitting the temporary address setting response message to the master device, receiving an address change request message having a predetermined logical address from the master device, changing the temporary logical address into the received logical address, and having a unique node address; and at least one master device for receiving the plurality of configuration request messages from the new device, setting the temporary logical address range for the new device, transmitting the temporary address setting request message having the set temporary logical address range to the new device, receiving the temporary address setting response message from the new device, setting the predetermined logical address of the new device, and transmitting the address change request message having the set logical address to the new device of the selected temporary address.
Abstract:
Disclosed are a position switch and a circuit breaker having the same. As contact plates having an elastically variable height are provided between switch blocks and switch levers, each of a testing contact plate and a running contact plate may compensate for inferior dimensioning of the switch blocks and the switch levers. This may allow a position of a breaker body to be rapidly and precisely displayed, and may prevent damage of the position switch provided at the breaker body. Furthermore, connection inferiority between a terminal of the breaker body and a terminal of a cradle may be prevented.
Abstract:
Disclosed is a robot cleaner system having superior functions of sucking dust and exhausting dust to a docking station. The robot cleaner includes a dust suction port to suck dust, a dust collecting chamber to collect dust introduced through the dust suction port, a dust exhaust port to exhaust dust collected in the dust collecting chamber to the docking station, a connection path extending from the dust suction port to the dust exhaust port in adjacent to the dust collecting chamber, and a valve device provided between the connection path and the dust collecting chamber, an opening/closing of the valve device allowing the dust collecting chamber to selectively communicate with the dust suction port or the dust exhaust port according to a pressure difference between the dust collecting chamber and the connection path.
Abstract:
A diagnostic server and a controlling method are provided. In the method, the diagnostic server receives a packet including at least one frame and performs error checking on each frame included in the packet. The diagnostic server receives a retransmitted packet upon determining from the result of error checking that a frame in the packet has an error. The diagnostic server performs error checking on each frame included in the retransmitted packet and restores the frame included in the packet based on the retransmitted packet when a frame, which is located in a location corresponding to the error frame, included in the retransmitted packet has no error. In the case where a packet including product information is transmitted, this method can reduce the number of retransmissions of the same packet required to acquire an error-free packet.
Abstract:
A codeword retransmission/decoding method and transmission/receiving apparatus uses feedback information. When a failure to decode data received from a receiving node occurs, the feedback information including success/failure information of the decoding and retransmission information are transmitted to a transmission node. The retransmission feedback information is configured by the receiving apparatus repeating code-bits of the codeword just previously transmitted so as to demodulate the retransmission part.
Abstract:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.