摘要:
In forming, an automatic forming circuit (210) included in a nonvolatile memory device (200) causes a constant current IL to flow in a selected memory cell having a considerably high initial resistance. When the forming generates a filament path in the memory cell and thereby a resistance value is decreased, a potential of a node NBL and a potential of a node Nin are also decreased. If the potentials become lower than that of a reference voltage Vref, an output NO of a difference amplifier (303) for detecting forming success is activated, and a forming success signal Vfp is activated after a delay time depending on the number n of flip flops FF1 to FFn and a clock signal CLK. Thereby, a switch transistor (301) is in a non-conducting state and the forming on a variable resistance element is automatically terminated.
摘要:
A forming method of a variable resistance nonvolatile memory element capable of lowering a forming voltage and preventing variations of the forming voltage depending on variable resistance elements. The forming method is for initializing a variable resistance element, including a step (S24) of determining whether or not a current flowing in a 1T1R memory cell is greater than a reference current; a step (S22) of applying a forming positive voltage pulse having a pulse width (Tp(n)) is gradually increased when it is determined that the current is not greater than the reference current; and a step (S23) of applying a negative voltage pulse having a pulse width Tn equal to or shorter than a pulse width Tp(n). The determining step (S24), the application step (S22), and the application step (S23) are repeated until the forming becomes successful.
摘要:
A method for programming a nonvolatile memory device according to the present invention includes a step of detecting an excessively low resistance cell from among a plurality of memory cells (11) (S101); a step of changing the resistance value of a load resistor (121) to a second resistance value smaller than a first resistance value (S103); and a step of causing, by applying a voltage pulse to a series circuit including the excessively low resistance cell and the load resistor (121) having the second resistance value, a variable resistance element (105) included in the excessively low resistance cell to shift to a second high resistance state having a resistance value greater than that of the first low resistance state (S104).
摘要:
A nonvolatile memory element of the present invention comprises a first electrode (103), a second electrode (108); a resistance variable layer (107) which is interposed between the first electrode (103) and the second electrode (107) and is configured to switch a resistance value reversibly in response to an electric signal applied between the electrodes (103) and (108), and the resistance variable layer (107) has at least a multi-layer structure in which a first hafnium-containing layer having a composition expressed as HfOx (0.9≦x≦1.6), and a second hafnium-containing layer having a composition expressed as HfOy (1.8
摘要翻译:本发明的非易失性存储元件包括第一电极(103),第二电极(108) 介于第一电极(103)和第二电极(107)之间的电阻变化层(107),其被配置为响应于施加在电极(103)和(108)之间的电信号可逆地切换电阻值, ,并且电阻变化层(107)具有至少多层结构,其中具有表示为HfO x(0.9 @ x @ 1.6)的组成的第一含铪层和具有表达的组成的第二含铪层 因为HfOy(1.8
摘要:
A driving method for driving a variable resistance element and a nonvolatile memory device, which achieves stable storage operation. In a low resistance write process, a low resistance writing voltage pulse having the negative polarity is applied once to a variable resistance layer included in a variable resistance element while in a high resistance write process, a high resistance writing voltage pulse having the positive polarity is applied more than twice to the same variable resistance layer. Here, when a voltage value of one of the high resistance writing voltage pulses is VH1 and a voltage value of the other high resistance writing voltage pulse applied subsequently is VH2, VH1>VH2 is satisfied.
摘要:
A method of fabricating a III-nitride semiconductor laser device includes: preparing a substrate product, where the substrate product has a laser structure, the laser structure includes a semiconductor region and a substrate of a hexagonal III-nitride semiconductor, the substrate has a semipolar primary surface, and the semiconductor region is formed on the semipolar primary surface; scribing a first surface of the substrate product to form a scribed mark, the scribed mark extending in a direction of an a-axis of the hexagonal III-nitride semiconductor; and after forming the scribed mark, carrying out breakup of the substrate product by press against a second region of the substrate product while supporting a first region of the substrate product but not supporting the second region thereof, to form another substrate product and a laser bar.
摘要:
A forming method of a variable resistance nonvolatile memory element capable of lowering a forming voltage and preventing variations of the forming voltage depending on variable resistance elements. The forming method is for initializing a variable resistance element, including a step (S24) of determining whether or not a current flowing in a 1T1R memory cell is greater than a reference current; a step (S22) of applying a forming positive voltage pulse having a pulse width (Tp(n)) is gradually increased when it is determined that the current is not greater than the reference current; and a step (S23) of applying a negative voltage pulse having a pulse width Tn equal to or shorter than a pulse width Tp(n). The determining step (S24), the application step (S22), and the application step (S23) are repeated until the forming becomes successful.
摘要:
Provided is a method for driving a non-volatile memory element in which a variable resistance element including a first electrode, a second electrode, and a variable resistance layer capable of reversibly changing between a high resistance state and a low resistance state with application of electrical signals having different polarities is connected in series with a current steering element having bidirectional rectifying characteristics with respect to an applied voltage. After the non-volatile memory element is manufactured, the resistance value of the variable resistance layer is reduced from a resistance value in the initial resistance state higher than that in the high resistance state by applying, to the non-volatile memory element, a voltage pulse having the polarity identical to that of the voltage pulse for changing the variable resistance layer from the low resistance state to the high resistance state in the normal operations.
摘要:
A method includes applying a first polarity writing voltage pulse to a metal oxide layer to change its resistance state from high to low into a write state, applying a second polarity erasing voltage pulse different from the first polarity to the metal oxide layer to change its resistance state from low to high into an erase state, and applying an initial voltage pulse having the second polarity to the metal oxide layer before first application of the writing voltage pulse, to change an initial resistance value of the metal oxide layer. R0>RH>RL and |V0|>|Ve|≧|Vw| are satisfied where R0, RL, and RH are the resistance values of the initial, write, and erase states, respectively, of the metal oxide layer, and V0, Vw, and Ve are voltage values of the initial, writing, and erasing voltage pulses, respectively.
摘要:
A nonvolatile memory element of the present invention comprises a first electrode (103), a second electrode (108); a resistance variable layer (107) which is interposed between the first electrode (103) and the second electrode (107) and is configured to switch a resistance value reversibly in response to an electric signal applied between the electrodes (103) and (108), and the resistance variable layer (107) has at least a multi-layer structure in which a first hafnium-containing layer having a composition expressed as HfOx (0.9≦x≦1.6), and a second hafnium-containing layer having a composition expressed as HfOy (1.8