摘要:
Electrically programmable fuses for an integrated circuit and design structures thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside over a first support and a second support, respectively, with the first support and the second support being spaced apart, and the fuse element bridging the distance between the first terminal portion over the first support and the second terminal portion over the second support. The fuse, first support and second support define a π-shaped structure in elevational cross-section through the fuse element. The first terminal portion, second terminal portion and fuse element are coplanar, with the fuse element residing above a void. The design structure for the fuse is embodied in a machine-readable medium for designing, manufacturing or testing a design of the fuse.
摘要:
A nano-fuse structural arrangement, includes, for example, a semiconductor substrate having an electrically conductive region formed thereon; an electrically conductive elongated nano-structure having a maximum diameter of less than approximately 50 nm and a maximum length of approximately 250 nm and being formed on the electrically conductive region; a barrier having barrier parts completely spaced from and completely surrounding elongated outer surfaces of the nano-structure, the spaces between the barrier and surfaces consisting essentially of a vacuum and being approximately equally spaced, so that the electrically conductive elongated nano-structure is blowable responsive to an electrical current flowable there through in a range of approximately 4 μA to approximately 120 μA.
摘要:
In one embodiment, a mandrel and an outer dummy spacer may be employed to form a first conductivity type region. The mandrel is removed to form a recessed region wherein a second conductivity type region is formed. In another embodiment, a mandrel is removed from within shallow trench isolation to form a recessed region, in which an inner dummy spacer is formed. A first conductivity type region and a second conductivity region are formed within the remainder of the recessed region. An anneal is performed so that the first conductivity type region and the second conductivity type region abut each other by diffusion. A gate electrode is formed in self-alignment to the p-n junction between the first and second conductivity regions. The p-n junction controlled by the gate electrode, which may be sublithographic, constitutes an inventive tunneling effect transistor.
摘要:
A design structure for an impedance matcher that automatically matches impedance between a driver and a receiver. The design structure for an impedance matcher includes a phase-locked loop (PLL) circuit that locks onto a data signal provided by the driver. The impedance matcher also includes tunable impedance matching circuitry responsive to one or more voltage-controlled oscillator control signals within the PLL circuit so as to generate an output signal that is impedance matched with the receiver.
摘要:
Novel semiconductor structures and methods are disclosed for forming a buried recombination layer underneath the bulk portion of a hybrid orientation technology by implanting at least one recombination center generating element to reduce single event upset rates in CMOS devices thereabove. The crystalline defects in the buried recombination layer caused by the recombination center generating elements are not healed even after a high temperature anneal and serve as recombination centers where holes and electrons generated by ionizing radiation are collected by. Multiple buried recombination layers may be formed. Optionally, one such layer may be biased with a positive voltage to prevent latchup by collecting electrons.
摘要:
A semiconductor memory device in which a vertical trench semiconductor-oxide-nitride-oxide-semiconductor (SONOS) memory cell is created in a semiconductor-on-insulator (SOI) substrate is provided that allows for the integration of dense non-volatile random access memory (NVRAM) cells in SOI-based complementary metal oxide semiconductor (CMOS) technology. The trench is processed using conventional trench processing and it is processed near the beginning of the inventive method that allows for the fabrication of the memory cell to be fully separated from SOI logic processing.
摘要:
An isolated shallow trench isolation portion is formed in a top semiconductor portion of a semiconductor-on-insulator substrate along with a shallow trench isolation structure. A trench in the shape of a ring is formed around a doped top semiconductor portion and filled with a conductive material such as doped polysilicon. The isolated shallow trench isolation portion and the portion of a buried insulator layer bounded by a ring of the conductive material are etched to form a cavity. A capacitor dielectric is formed on exposed semiconductor surfaces within the cavity and above the doped top semiconductor portion. A conductive material portion formed in the trench and above the doped top semiconductor portion constitutes an inner electrode of a capacitor, while the ring of the conductive material, the doped top semiconductor portion, and a portion of a handle substrate abutting the capacitor dielectric constitute a second electrode.
摘要:
A silicon containing fin is formed on a semiconductor substrate. A silicon oxide layer is formed around the bottom of the silicon containing fin. A gate dielectric is formed on the silicon containing fin followed by formation of a gate electrode. While protecting the portion of the semiconductor fin around the channel, a bottom portion of the silicon containing semiconductor fin is etched by a isotropic etch leaving a body strap between the channel of a finFET on the silicon containing fin and an underlying semiconductor layer underneath the silicon oxide layer. The fin may comprise a stack of inhomogeneous layers in which a bottom layer is etched selectively to a top semiconductor layer. Alternatively, the fin may comprise a homogeneous semiconductor material and the silicon containing fin may be protected by dielectric films on the sidewalls and top surfaces of the silicon containing fin.
摘要:
Electrically programmable fuse structures for an integrated circuit and methods of fabrication thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside over a first support and a second support, respectively, with the first support and the second support being spaced apart, and the fuse element bridging the distance between the first terminal portion over the first support and the second terminal portion over the second support. The fuse, first support and second support define a α-shaped structure in elevational cross-section through the fuse element. The first terminal portion, second terminal portion and fuse element are coplanar, with the fuse element residing above a void, which in one embodiment is filed by a thermally insulating dielectric material that surrounds the fuse element.
摘要:
Semiconductor devices are fabricated in a strained layer region and strained layer-free region of the same substrate. A first semiconductor device, such as a memory cell, e.g. a deep trench storage cell, is formed in a strained layer-free region of the substrate. A strained layer region is selectively formed in the same substrate. A second semiconductor device (66, 68, 70), such as an FET, e.g. an MOSFET logic device, is formed in the strained layer region.