Abstract:
In a photolithography process, a photoresist layer is formed on a substrate. A photomask is aligned over the substrate to transfer pattern images defined in the photomask on the substrate. The photomask includes first and second patterns of different light transmission rates, and a dummy pattern surrounding the second pattern having a light transmission rate lower than that of the first pattern. The substrate is exposed to a light radiation through the photomask. The photoresist layer then is developed to form the pattern images. The dummy pattern is dimensionally configured to allow light transmission, but in a substantially amount so that the dummy pattern is not imaged during exposure.
Abstract:
The present disclosure provides a method for making a semiconductor device. The method includes forming a material layer on a substrate; forming a sacrificial layer on the material layer, where the material layer and sacrificial layer each as a thickness less than 100 angstrom; forming a patterned photoresist layer on the sacrificial layer; applying a first wet etching process to etch the sacrificial layer to form a patterned sacrificial layer using the patterned photoresist layer as a mask; applying a second wet etching process to etch the first material layer; and applying a third wet etching process to remove the patterned sacrificial layer.
Abstract:
A method of creating a resist image on a semiconductor substrate includes exposing a layer of photoresist on the semiconductor substrate and developing the exposed layer of photoresist using a first fluid including supercritical carbon dioxide and a base such as Tetra-Methyl Ammonium Hydroxide (TMAH). Additionally, the developed photoresist can be cleaned using a second fluid including supercritical carbon dioxide and a solvent such as methanol, ethanol, isopropanol, and xylene.
Abstract:
An immersion lithography apparatus includes a lens assembly having an imaging lens, a wafer stage for securing a wafer beneath the lens assembly, a fluid module for providing a fluid into a space between the lens assembly and the wafer, and a plurality of extraction units positioned proximate to an edge of the wafer. The extraction units are configured to operate independently to remove a portion of the fluid provided into the space between the lens assembly and the wafer.
Abstract:
An immersion lithography resist material comprising a matrix polymer having a first polarity and an additive having a second polarity that is substantially greater than the first polarity. The additive may have a molecular weight that is less than about 1000 Dalton. The immersion lithography resist material may have a contact angle that is substantially greater than the contact angle of the matrix polymer.
Abstract:
A method for cleaning a photomask includes cleaning the photomask with a chemical cleaner, introducing a solution to the photomask, the solution is configured to react with residuals generated from the chemical cleaner to form insoluble precipitates, and rinsing the photomask with a fluid to remove the insoluble precipitates from the photomask.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
An ESD-resistant photomask and method of preventing mask ESD damage is disclosed. The ESD-resistant photomask includes a mask substrate, a pattern-forming material provided on the substrate, a circuit pattern defined by exposure regions etched in the pattern-forming material, and positive or negative ions implanted into the mask substrate throughout ion implantation regions. The ions in the ion implantation regions dissipate electrostatic charges on the mask, thus preventing the buildup of electrostatic charges which could otherwise attract image-distorting particles to the mask or damage the mask.
Abstract:
An optical proximity correction photomask comprises a transparent substrate, a main feature having a first transmitivity disposed on the transparent substrate and at least one assist feature having a second transmitivity disposed beside the main feature and on the transparent substrate, wherein the first transmitivity is not equal to the second transmitivity.
Abstract:
An integrated circuit in which measurement of the alignment between subsequent layers has less susceptibility to stress induced shift. A first layer of the structure has a first overlay mark. A second and/or a third layer are formed in the alignment structure and on the first layer. Portions of the second and/or third layer are selectively removed from regions in and around the first overlay mark. A second overlay mark is formed and aligned to the first overlay mark. The alignment between the second overlay mark and first overlay mark may be measured with an attenuated error due to reflection and refraction or due to an edge profile shift of the first overlay mark.