Abstract:
A mask with extended mask window for forming patterns on a semiconductor substrate. The mask includes a main chip array having four sides for forming patterns of a main chip in a semiconductor substrate and a plurality of extended mask windows arranged around the main chip array. A method of dummy exposure using the mask includes providing a semiconductor substrate comprising a nitride layer with a plurality of main chip areas therein, and a plurality of unpatterned areas therein, forming a resist layer on the semiconductor substrate, providing an exposure mask comprising a main chip array and a plurality of extended mask windows, patterning the main chip areas of the semiconductor substrate using the main chip array of the exposure mask, patterning the unpatterned areas of the semiconductor substrate using the windows of the exposure mask, and removing the unexposed portions of the resist layer.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
An integrated circuit in which measurement of the alignment between subsequent layers has less susceptibility to stress induced shift. A first layer of the structure has a first overlay mark. A second and/or a third layer are formed in the alignment structure and on the first layer. Portions of the second and/or third layer are selectively removed from regions in and around the first overlay mark. A second overlay mark is formed and aligned to the first overlay mark. The alignment between the second overlay mark and first overlay mark may be measured with an attenuated error due to reflection and refraction or due to an edge profile shift of the first overlay mark.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
A rework process of patterned photo-resist layer is provided. First, a substrate is provided with a first DARC, a first primer and a first patterned photo-resist layer being sequentially formed thereon. Next, remove the first patterned photo-resist layer and the first primer from the first DARC. After that, form a second DARC on the first DARC; form a second primer on the second DARC. Last, form a second patterned photo-resist layer on the second primer.
Abstract:
A sandwich ARC structure for preventing metal to contact from shifting, the sandwich ARC structure comprising a first Ti layer formed on a metal laer and a first TiN layer formed on the first Ti layer. A second Ti layer is formed on the first TiN layer and a second TiN layer is formed on the second Ti layer. Wherein the sandwich ARC structure formed of first Ti/first TiN/second Ti/second TiN will reduces the tress between said metal layer and a dielectric layer formed below the metal layer.
Abstract:
An integrated circuit capable of operating despite a profile shift is disclosed. Overlay marks on the integrated circuit are surrounded by a trench that tends to relieve the effect of a profile shift caused by stress applied to the integrated circuit. The position of the overlay marks tends, therefore, not to be affected by the stress.
Abstract:
A rework process of patterned photo-resist layer is provided. First, a substrate is provided with a first DARC, a first primer and a first patterned photo-resist layer being sequentially formed thereon. Next, remove the first patterned photo-resist layer and the first primer from the first DARC. After that, form a second DARC on the first DARC; form a second primer on the second DARC. Last, form a second patterned photo-resist layer on the second primer.
Abstract:
Photosensitive materials and method of forming a pattern that include providing a composition of a component of a photosensitive material that is operable to float to a top region of a layer formed from the photosensitive material. In an example, a photosensitive layer includes a first component having a fluorine atom (e.g., alkyl fluoride group). After forming the photosensitive layer, the first component floats to a top surface of the photosensitive layer. Thereafter, the photosensitive layer is patterned.