Abstract:
A vertical channel transistor structure is provided. The structure includes a substrate, a channel, a cap layer, a charge trapping layer, a source and a drain. The channel is formed in a fin-shaped structure protruding from the substrate. The cap layer is deposited on the fin-shaped structure. The cap layer and the fin-shaped structure have substantially the same width. The charge trapping layer is deposited on the cap layer and on two vertical surfaces of the fin-shaped structure. The gate is deposited on the charge trapping layer and on two vertical surfaces of the fin-shaped structure. The source and the drain are respectively positioned on two sides of the fin-shaped structure and opposite the gate.
Abstract:
A method of identifying logical information in a cell, particularly in a programming by hot hole injection nitride electron storage (PHINES) cell by one-side reading scheme is disclosed. The method comprise steps of: erasing the first region and the second region of PHINES cell by increasing a local threshold voltage (Vt) to a certain value; programming at least one of the first region and the second region of the PHINES cell by hot hole injection; and reading a logical state of the PHINES cell by measuring an output current of one of the first region and the second region; wherein different quantity of the output current is caused by interaction between different quantity of the hot hole stored in the first region and the second region, so as to determine the logical state of the PHINES cell by one-side reading scheme.
Abstract:
A method is provided of forming an assisted charge memory (AC-memory) cell. The method uses a two-sided charge trap memory cell that includes a two-sided charge trapping layer. A charge is formed in at least a portion of the two-sided charge trapping layer. One side (AC-side) of the two-sided charge trapping layer always has a fixed high threshold voltage (Vt) level which is the assisted charge for the AC-memory cell. The other side (data-side) is used for memory operations.
Abstract:
A method of operating a memory cell by applying a positive voltage to the gate sufficient to cause hole tunneling from the gate toward the charge storage layer is disclosed. The method is applied to a memory cell including a semiconductor layer having at least two source/drain regions disposed below a surface of the semiconductor layer and separated by a channel region. The memory cell also has a lower insulating layer disposed above the channel region; a charge storage layer disposed above the lower insulating layer; an upper insulating multi-layer structure disposed above the charge storage layer. The upper insulating multi-layer structure comprises a lower dielectric layer and an upper nitride layer disposed above the lower dielectric layer and the memory cell has a gate disposed above the upper insulating multi-layer structure.
Abstract:
A non-volatile memory cell capable of storing two bits of information having a non-conducting charge trapping dielectric, such as silicon nitride, layered in association with at least one electrical dielectric layer, such as an oxide, with a P-type substrate and an N-type channel implanted in the well region of the substrate between two source/drain regions is disclosed. The N-type channel achieves an inversion layer without the application of bias voltage to the gate of the memory cell. A method that implants the N-type channel in the P-type substrate of the cell wherein the N-type channel lowers the un-programmed or programmed voltage threshold of the memory cell to a value lower than would exist without the N-type channel is disclosed. The N-type channel reduces the second bit effect such that the window of operation between the programmed and un-programmed voltage thresholds of the bits is widened.
Abstract:
The present disclosure provides a method for fabricating a semiconductor device including providing a semiconductor substrate comprising a first surface and a second surface, wherein at least one imaging sensor is located adjacent the first surface, activating a dopant layer in the semiconductor substrate adjacent the second surface using a localized annealing process, and etching the dopant layer
Abstract:
The present disclosure provides an image sensor semiconductor device. The semiconductor device includes a sensor element disposed in a semiconductor substrate; an inter-level dielectric (ILD) disposed on the semiconductor substrate; and a trench disposed in the ILD, overlying and enclosing the sensor element, and filled with a first dielectric material.
Abstract:
The present disclosure provides a backside illuminated semiconductor device. The device includes a substrate having a front surface and a back surface; a plurality of sensor elements formed in the substrate, each of the plurality of sensor elements is designed and configured to receive light directed towards the back surface; and a sensor isolation feature formed in the substrate, and disposed horizontally between two adjacent elements of the plurality of sensor elements, and vertically between the back surface and the front surface.
Abstract:
A vertical channel memory including a substrate, a channel, a multi-layer structure, a gate, a first terminal and a second terminal is provided. The channel is protruded from the substrate and has a top surface and two vertical surfaces. The multi-layer structure is disposed on the two vertical surfaces of the channel. The gate straddling multi-layer structure is positioned above the two vertical surfaces of the channel. The first terminal and the second terminal are respectively positioned at two sides of the channel opposing to the gate.
Abstract:
A method for operating a nitride trapping memory cell is provided to resolve hard-to-erase condition by employing a reset technique to eliminate or reduce the number of electrons in the middle of a junction region. When a hard-to-erase condition is detected after a series of program and erase cycles, such as 500 or 100 program and erase cycles, a substrate transient hot hole (STHH) reset operation is applied. The substrate transient hot hole reset injects holes that are far away junction than band-to-band tunneling hot hole (BTBTHH) injection such that the STHH reset on cycle endurance is able to maintain a desirable cycle window to eliminate or reduce the hard-to erase condition in subsequent program and erase cycles.