摘要:
A metal ion transistor and related methods are disclosed. In one embodiment, the metal ion transistor includes a cell positioned in at least one isolation layer, the cell including a metal ion doped low dielectric constant (low-k) dielectric material sealed from each adjacent isolation layer; a first electrode contacting the cell on a first side; a second electrode contacting the cell on a second side; and a third electrode contacting the cell on a third side, wherein each electrode is isolated from each other electrode.
摘要:
A method for determining a line-to-line spacing of a device. The method includes experimentally determining a slope kCA, experimentally determining a slope kSE and determining a line-to-line spacing of a device from the slope kCA and the slope kSE. A structure for performing the method includes a non-destructive line-to-line spacing characterization macro.
摘要:
Novel structures and methods for evaluating lines in semiconductor integrated circuits. A first plurality of lines are formed on a wafer each of which includes multiple line sections. All the line sections are of the same length. The electrical resistances of the line sections are measured. Then, a first line geometry adjustment is determined based on the electrical resistances of all the sections. The first line geometry adjustment represents an effective reduction of cross-section size of the lines due to grain boundary electrical resistance. A second plurality of lines of same length and thickness can be formed on the same wafer. Then, second and third line geometry adjustments are determined based on the electrical resistances of these lines measured at different temperatures. The second and third line geometry adjustments represent an effective reduction of cross-section size of the lines due to grain boundary electrical resistance and line surface roughness.
摘要:
A structure and a method for operating the same. The method comprises providing a resistive/reflective region on a substrate, wherein the resistive/reflective region comprises a material having a characteristic of changing the material's reflectance due to the material absorbing heat; sending an electric current through the resistive/reflective region so as to cause a reflectance change in the resistive/reflective region from a first reflectance value to a second reflectance value different from the first reflectance value; and optically reading the reflectance change in the resistive/reflective region.
摘要:
A thermo-mechanical cleavable structure is provided and may be used as a programmable fuse for integrated circuits. As applied to a programmable fuse, the thermo-mechanical cleavable structure includes an electrically conductive cleavable layer adjacent to a thermo-mechanical stressor. As electricity is passed through the cleavable layer, the cleavable layer and the thermo-mechanical stressor are heated and gas evolves from the thermo-mechanical stressor. The gas locally insulates the thermo-mechanical stressor, causing local melting adjacent to the bubbles in the thermo-mechanical stressor and the cleavable structure forming cleaving sites. The melting also interrupts the current flow through the cleavable structure so the cleavable structure cools and contracts. The thermo-mechanical stressor also contracts due to a phase change caused by the evolution of gas therefrom. As the thermo-mechanical cleavable structure cools, the cleaving sites expand causing gaps to be permanently formed therein.
摘要:
Novel structures and methods for evaluating lines in semiconductor integrated circuits. A first plurality of lines can be formed on a wafer each of which comprises multiple line sections. All the line sections are of the same length. The electrical resistances of the line sections are measured. Then, a first line geometry adjustment is determined based on the electrical resistances of all the sections of all the lines. The first line geometry adjustment represents an effective reduction of cross-section size of the lines due to grain boundary electrical resistance. A second plurality of lines of same length and thickness can be formed on the same wafer. Then, second and third line geometry adjustments can be determined based on the electrical resistances of these lines measured at different temperatures. The second and third line geometry adjustments represent an effective reduction of cross-section size of the lines due to grain boundary electrical resistance and line surface roughness.
摘要:
A method and structure tests devices on a wafer by applying an electrical bias to the devices and simultaneously monitoring emitted light from all of the devices. The emitted light indicates locations of defective devices and records time-based images of the emitted light across the wafer.