Abstract:
A device, a network, and a method for wireless communication are provided. In an embodiment, the method, performed by a first communication node, includes generating at least one of a spatial-specific receiving pattern and a first spatial-specific processing pattern, receiving a waveform signal from one or more second nodes in accordance with the at least one of the spatial-specific receiving pattern or the first spatial-specific processing pattern, determining a second spatial-specific processing pattern and a channel status of a channel, wherein the channel status of the channel is according to the at least one of the spatial-specific receiving pattern and the second spatial-specific processing pattern and transmitting a signal along a transmission direction, wherein the transmission direction is in accordance with the at least one of the spatial-specific receiving pattern and the second spatial-specific processing pattern.
Abstract:
A method includes transmitting, by a communications controller to a user equipment (UE), a first data block on a first carrier and transmitting, by the communications controller to the UE, a first downlink control information (DCI) to initiate a hybrid automatic repeat request (HARQ) process associated with the first data block. The method also includes retransmitting, by the communications controller to the UE, the first data block and transmitting, by the communications controller to the UE, a second DCI, where the second DCI includes a first transmission indicator and an indicator of the first carrier, and where the second DCI continues the HARQ process.
Abstract:
A method for cell adaptation includes receiving, by a user equipment (UE), one or more transmission parameters for a transition reference signal (TRS). One or more cells is transitioned between a reduced activity mode and an active transmission and reception mode in accordance with the TRS. The method further includes the UE determining whether or not to transmit the TRS in accordance with one or more TRS transmission criteria, and the UE transmitting the TRS in accordance with the one or more transmission parameters.
Abstract:
Measurements and Channel State Information (CSI) feedback are configured using communications between a network and user equipment (UE). The communications includes a first signaling from a network component to the UE indicating one or more reference signal (RS) resource configurations, a second signaling indicating one or more interference measurement (IM) resource configurations, and a third signaling indicating a CSI report configuration, wherein the CSI report configuration indicates a subset of the one or more RS resource configurations and a subset of the one or more IM resource configurations. The UE establishes a RS based measurement according to the subset of the one or more RS resource configurations and an IM according to the subset of the one or more IM resource configurations. The UE then generates and sends to the network a CSI report in accordance with the CSI report configuration and using the RS based measurement and the IM.
Abstract:
User Equipments (UEs) may be assigned a set of aggregated component carriers for downlink carrier aggregation and/or carrier selection. Some UEs may be incapable of transmitting uplink signals over all component carriers in their assigned set of aggregated component carriers. In such scenarios, a UE may need to perform SRS switching in order to transmit SRS symbols over all of the component carriers. Embodiments of this disclosure provide various techniques for facilitating SRS switching. For example, a radio resource control (RRC) message may be used to signal a periodic SRS configuration parameter. As another example, a downlink control indication (DCI) message may be used to signal an aperiodic SRS configuration parameter. Many other examples are also provided.
Abstract:
A method for multiple point communications includes configuring a set of first communications system resources to form a plurality of first communications system resource groups, each first communications system resource group including a plurality of channels, and configuring a set of second communications system resources for each one of the plurality of first communications system resource groups, the set of second communications system resources used to convey a feedback transmission. The method also includes signaling information about the plurality of first communications system resource groups to a first user equipment, and signaling information about the sets of second communications system resources associated with the plurality of first communications system resource groups to the first user equipment.
Abstract:
A method for operating a first communications controller adapted for operation in a first communications band in a communications system with a plurality of communications bands includes signaling a first higher layer message to a user device in the first communications carrier, the first higher layer message including information regarding an activation of operations in a second communications carrier, coordinating with a second communications controller adapted for operations in the second communications carrier, an opportunistic transmission opportunity in the second communication carrier, generating a first physical layer message comprising an aperiodic trigger configured to prompt a channel measurement in accordance with a reference signal transmitted in the second communications carrier, the first physical layer message serving as an indication of the opportunistic transmission opportunity, and signaling the first physical layer message to the user device in the first communications carrier.
Abstract:
A method for providing user equipment access to millimeter wave stations through a microwave station includes receiving an indication of millimeter wave stations operating within a microwave coverage area of a microwave station. In a microwave band, information associated with the millimeter wave stations is broadcasted to user equipment in the microwave coverage area. A request is sent to the millimeter wave stations to transmit configuration signals over a microwave band. An instruction is transmitted over the microwave band to the user equipment to perform proximity measurements of the configuration signals. According to the proximity measurements, a request is sent to a particular millimeter wave station to transmit beamforming signals over a millimeter wave band. An instruction is transmitted over the microwave band to the user equipment to perform beamforming measurements of the beamforming signals. According to the beamforming measurements, the user equipment is switched to millimeter wave operation.
Abstract:
A method for multiple point communications includes configuring a set of first communications system resources to form a plurality of first communications system resource groups, each first communications system resource group including a plurality of channels, and configuring a set of second communications system resources for each one of the plurality of first communications system resource groups, the set of second communications system resources used to convey a feedback transmission. The method also includes signaling information about the plurality of first communications system resource groups to a first user equipment, and signaling information about the sets of second communications system resources associated with the plurality of first communications system resource groups to the first user equipment.
Abstract:
An embodiment method for managing uplink transmission includes dividing, by a network controller, frequency resources in a single OFDM symbol into two sets of frequency resources. The method further includes signaling, by the network controller, to a UE to transmit data in a first set of the frequency resources and to transmit a pilot signal in a second set of the frequency resources.