Abstract:
Systems and methods include actuation system of turbomachinery that include an actuator configured to control pitch of vanes of the turbomachinery and a positioner configured to position the actuator to control the pitch. The actuation system also includes a controller system communicably coupled to the positioner. The controller system is configured to drive the positioner based at least in part on a set point of the turbomachinery and obtain data from the positioner indicating an amount of force used for a target pitch. Using the data, the controlling system derives an operating condition for the turbomachinery and controls the turbomachinery based at least in part on the operating condition of the turbomachinery.
Abstract:
A system includes an industrial machine that includes a motor and a motor bearing. The system also includes multiple acoustic sensors disposed adjacent the industrial machine. The system further includes multiple other sensors disposed adjacent the industrial machine. The system even further includes a controller programmed to receive noise signals representative of a noise made by the motor bearing acquired by the multiple acoustic sensors, to receive signals representative of operational conditions of the industrial machine, to analyze the noise signals to determine characteristics of the noise, to analyze the characteristics of the noise utilizing the operational conditions, to compare the characteristics of the noise to a plurality of models associated with different noises made by the motor bearing that are associated with a particular abnormal operation, and to select a model from the plurality of models that matches the characteristics of the noise.
Abstract:
A system for predicting performance of a liquid fuel system includes a processor and a memory communicatively coupled to the processor, wherein the memory stores instructions which when executed by the processor perform operations. The operations include establishing a baseline parameter for at least one physical parameter of a nozzle or a valve associated with at least one combustor of the liquid fuel system with at least one time. The operations also include obtaining one or more operational parameters associated with the liquid fuel system from one or more sensors during operation of a gas turbine engine. The operations further include utilizing an operational model of a fuel flow divider to output an action associated with the liquid fuel system based at least on the baseline parameter and the one or more operational parameters.
Abstract:
A simple-cycle gas turbine system includes an injection system including a plurality of injection tubes that may inject a fluid into a duct of an exhaust processing system that may process exhaust gas generated by a gas turbine engine. The exhaust processing system includes a selective catalytic reduction (SCR) system that may reduce a level of nitrogen oxides (NOx) within the exhaust gas; and a mixing system positioned adjacent to the plurality of injection tubes and within the exhaust processing system. The mixing system includes a mixing module having a plurality of turbulators that may swirl the fluid, or the exhaust gas, or both, in a first swirl direction to encourage turbulent flow along an axis of the exhaust processing system and thereby facilitate mixing between the fluid and the exhaust gas.
Abstract:
A gas accumulation detection and ventilation system for a gas turbine enclosure includes a pipe array positioned adjacent a floor of the gas turbine enclosure and a ventilation assembly including a fan, an air flow inlet and an air flow outlet. The pipe array includes at least one pipe having at least one opening therein. The fan of the ventilation assembly directs an air flow sweep through the air flow inlet along the floor of the gas turbine enclosure. A hazardous gas sensor panel in communication with the pipe array and the ventilation assembly detects an accumulation level of turbine fuel gas in the gas turbine enclosure based on input from the pipe array and activates the ventilation assembly according to the detected accumulation level
Abstract:
The present application provides a vane separator system for use with a gas turbine engine. The vane separator system may include a number of vanes with a first vane, a second vane, a third vane, a fourth vane, and a fifth vane. The vane separator system may include a number of vane flutes separating the vanes, and a first acoustic insulator positioned within a first vane flute.
Abstract:
A silencer duct includes at least one element including a three-dimensional (3D) chamber having a portion that is at least one of non-vertical or non-linear. An acoustic absorbing member is self-supporting such that is may be positioned within the portion to substantially fill the portion, but does not sag or droop over time.
Abstract:
A silencer panel includes an acoustic absorbing material; and an enclosure surrounding the acoustic absorbing material. The enclosure includes at least one plastic, perforated side wall.
Abstract:
A silencer panel section may include an acoustic absorbing material, a first enclosure surrounding the acoustic absorbing material, and a first coupler configured to couple the first enclosure to a second enclosure of an adjacent silencer panel section. A silencer panel may employ a plurality of the sections coupled together to form a single silencer panel. A silencer duct may include a frame forming a working fluid flow path, and a plurality of silencer panel mounts positioned within the frame, each silencer panel mount configured to slidingly receive a silencer panel, such as the silencer panel described herein.
Abstract:
A fuel purge system for a gas turbine engine includes a fuel manifold configured to receive a liquid fuel from a fuel supply and distribute the liquid fuel to a combustor assembly. Also included is a liquid pump configured to receive a liquid from a liquid supply and distribute the liquid to the fuel manifold for pressurization of the fuel manifold during a purge operation of the combustor assembly.