摘要:
A method for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
摘要:
A heterojunction bipolar transistor (HBT) structure, method of manufacturing the same and design structure thereof are provided. The HBT structure includes a semiconductor substrate having a sub-collector region therein. The HBT structure further includes a collector region overlying a portion of the sub-collector region. The HBT structure further includes an intrinsic base layer overlying at least a portion of the collector region. The HBT structure further includes an extrinsic base layer adjacent to and electrically connected to the intrinsic base layer. The HBT structure further includes an isolation region extending vertically between the extrinsic base layer and the sub-collector region. The HBT structure further includes an emitter overlying a portion of the intrinsic base layer. The HBT structure further includes a collector contact electrically connected to the sub-collector region. The collector contact advantageously extends through at least a portion of the extrinsic base layer.
摘要:
A varactor diode includes a portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate and a gate electrode located thereupon. A first electrode having a doping of a first conductivity type laterally abuts a doped semiconductor region having the first conductivity type, which laterally abuts a second electrode having a doping of a second conductivity type, which is the opposite of the first conductivity type. A hyperabrupt junction is formed between the second doped semiconductor region and the second electrode. The gate electrode controls the depletion of the first and second doped semiconductor regions, thereby varying the capacitance of the varactor diode. A design structure for the varactor diode is also provided.
摘要:
A prompt-shift device having reduced programming time in the sub-millisecond range is provided. The prompt-shift device includes an altered extension region located within said semiconductor substrate and on at least one side of the patterned gate region, and an altered halo region located within the semiconductor substrate and on at least one side of the patterned gate region. The altered extension region has an extension ion dopant concentration of less than about 1E20 atoms/cm3, and the altered extension region has a halo ion dopant concentration of greater than about 5E18 atoms/cm3. The altered halo region is in direct contact with the altered extension region.
摘要:
A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer on a buried oxide (BOX) layer of a silicon-on-insulator substrate; a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer, a doped region in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer, doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer, doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
摘要:
An FET structure on a semiconductor substrate which includes forming recesses for a source and a drain of the gate structure on a semiconductor substrate, halo implanting regions through the bottom of the source and drain recesses, the halo implanted regions being underneath the gate stack, implanting junction butting at the bottom of the source and drain recesses, and filling the source and drain recesses with a doped epitaxial material. In exemplary embodiments, the semiconductor substrate is a semiconductor on insulator substrate including a semiconductor layer on a buried oxide layer. In exemplary embodiments, the junction butting and halo implanted regions are in contact with the buried oxide layer. In other exemplary embodiments, there is no junction butting. In exemplary embodiments, halo implants implanted to a lower part of the FET body underneath the gate structure provide higher doping level in lower part of the FET body to reduce body resistance, without interfering with FET threshold voltage.
摘要:
Methods of forming hyper-abrupt p-n junctions and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt p-n junction.
摘要:
The structure for millimeter-wave frequency applications, includes a Schottky barrier diode (SBD) with a cutoff frequency (FC) above 1.0 THz formed on a SiGe BiCMOS wafer. A method is also contemplated for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
摘要:
A method of forming a semiconductor device having two different strains therein is provided. The method includes forming a strain in a first region with a first straining film, and forming a second strain in a second region with a second straining film. Either of the first or second strains may be either tensile or compressive. Additionally the strains may be formed at right angles to one another and may be additionally formed in the same region. In particular a vertical tensile strain may be formed in a base and collector region of an NPN bipolar transistor and a horizontal compressive strain may be formed in the extrinsic base region of the NPN bipolar transistor. A PNP bipolar transistor may be formed with a compression strain in the base and collector region in the vertical direction and a tensile strain in the extrinsic base region in the horizontal direction.
摘要:
The invention provides a method to enhance the programmability of a prompt-shift device, which reduces the programming time to sub-millisecond times, by altering the extension and halo implants, instead of simply omitting the same from one side of the device as is the case in the prior art prompt-shift devices. The invention includes an embodiment in which no additional masks are employed, or one additional mask is employed. The altered extension implant is performed at a reduced ion dose as compared to a conventional extension implant process, while the altered halo implant is performed at a higher ion dose than a conventional halo implant. The altered halo/extension implant shifts the peak of the electrical field to under an extension dielectric spacer.