摘要:
A nonvolatile semiconductor memory device includes: forming a stacked body by alternately stacking a plurality of interlayer insulating films and a plurality of control gate electrodes; forming a through-hole extending in a stacking direction in the stacked body; etching a portion of the interlayer insulating film facing the through-hole via the through-hole to remove the portion; forming a removed portion; forming a first insulating film on inner faces of the through-hole and the portion in which the interlayer insulating films are removed; forming a floating gate electrode in the portion in which the interlayer insulating films are removed; forming a second insulating film so as to cover a portion of the floating gate electrode facing the through-hole; and burying a semiconductor pillar in the through-hole.
摘要:
A non-volatile semiconductor storage device has a plurality of memory strings to each of which a plurality of electrically rewritable memory cells are connected in series. Each of the memory strings includes first semiconductor layers each having a pair of columnar portions extending in a vertical direction with respect to a substrate and a coupling portion formed to couple the lower ends of the pair of columnar portions; a charge storage layer formed to surround the side surfaces of the columnar portions; and first conductive layers formed to surround the side surfaces of the columnar portions and the charge storage layer. The first conductive layers function as gate electrodes of the memory cells.
摘要:
A method for manufacturing a nonvolatile semiconductor memory device, the device including a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction and a semiconductor pillar piercing the stacked structural unit in the first direction, the method includes: forming a stacked unit including a core material film alternately stacked with a sacrificial film on a major surface of a substrate perpendicular to the first direction; making a trench in the stacked unit, the trench extending in the first direction and a second direction in a plane perpendicular to the first direction; filling a filling material into the trench; removing the sacrificial film to form a hollow structural unit, the hollow structural unit including a post unit supporting the core material film on the substrate, the post unit being made of the filling material; and forming the stacked structural unit by stacking one of the insulating films and one of the electrode films on a surface of the core material film exposed by removing the sacrificial film.
摘要:
A nonvolatile semiconductor memory device includes a substrate, and a plurality of memory strings, the memory string including a first selection transistor including a first pillar shaped semiconductor formed perpendicular to the substrate, a first gate insulating film formed around the first pillar shaped semiconductor, and a first gate electrode formed around the first gate insulating film, and a plurality of memory cells including a second pillar shaped semiconductor formed on the first pillar shaped semiconductor, the diameter of the first pillar shaped semiconductor being larger than the diameter of the second pillar shaped semiconductor at the part where the second pillar shaped semiconductor is connected to the first pillar shaped semiconductor, a first insulating film formed around the second pillar shaped semiconductor, a charge storage layer formed around the first insulating film, a second insulating film formed around the charge storage layer, and first to nth electrodes formed around the second insulating film (n is a natural number not less than 2), the first to nth electrodes being plate shaped, the first to nth electrodes being first to nth conductor layers spread in two dimensions, and a second selection transistor including a third pillar shaped semiconductor formed on the second pillar shaped semiconductor, a second gate insulating film formed around the third pillar shaped semiconductor and a second gate electrode formed around the second gate insulating film.
摘要:
Each of memory strings is provided with a first semiconductor layer having a pair of columnar portions extending in a perpendicular direction with respect to a substrate; a charge storage layer formed to surround a side surface of the columnar portions; and a first conductive layer formed to surround the charge storage layer. Each of the select transistors is provided with a second semiconductor layer extending upwardly from an upper surface of the columnar portions; a gate insulating layer formed to surround a side surface of the second semiconductor layer; and a second conductive layer formed to surround the gate insulating layer. An effective impurity concentration of the second semiconductor layer is less than or equal to an effective impurity concentration of the first semiconductor layer.
摘要:
A nonvolatile semiconductor memory device comprises: a bit line; a source line; a memory string having a plurality of electrically data-rewritable memory transistors connected in series; a first select transistor provided between one end of the memory string and the bit line; a second select transistor provided between the other end of the memory string and the source line; and a control circuit configured to control a read operation. A plurality of the memory strings connected to one bit line via a plurality of the first select transistors. During reading of data from a selected one of the memory strings, the control circuit renders conductive the first select transistor connected to an unselected one of the memory strings and renders non-conductive the second select transistor connected to unselected one of the memory strings.
摘要:
A laminated body is formed by alternately laminating a plurality of dielectric films and electrode films on a silicon substrate. Next, a through hole extending in the lamination direction is formed in the laminated body. Next, a selective nitridation process is performed to selectively form a charge layer made of silicon nitride in a region of an inner surface of the through hole corresponding to the electrode film. Next, a high-pressure oxidation process is performed to form a block layer made of silicon oxide between the charge layer and the electrode film. Next, a tunnel layer made of silicon oxide is formed on an inner side surface of the through hole. Thus, a flash memory can be manufactured in which the charge layer is split for each electrode film.
摘要:
A nonvolatile semiconductor memory device comprises: a plurality of first memory strings; a first select transistor having one end thereof connected to one end of the first memory strings; a first line commonly connected to the other end of a plurality of the first select transistors; a switch circuit having one end thereof connected to the first line; and a second line commonly connected to the other end of a plurality of the switch circuits. The switch circuit controls electrical connection between the second line and the first line.
摘要:
Each of memory strings comprising: a first semiconductor layer having a pair of columnar portions extending in a vertical direction to a substrate and a joining portion formed to join lower ends of the pair of columnar portions; an electric charge accumulation layer formed to surround a side surface of the first semiconductor layer; and a first conductive layer formed to surround a side surface of the electric charge accumulation layer. The columnar portions are aligned at a first pitch in a first direction orthogonal to the vertical direction, and arranged in a staggered pattern at a second pitch in a second direction orthogonal to the vertical and first directions. The first conductive layers are configured to be arranged at the first pitch in the first direction, and extend to curve in a wave-like fashion in the second direction along the staggered-pattern arrangement.
摘要:
A method for manufacturing a nonvolatile semiconductor storage device, including: forming a first conductive layer so that it is sandwiched in an up-down direction by first insulating layers; forming a first hole so that it penetrates the first insulating layers and the first conductive layer; forming a first side wall insulating layer on a side wall facing the first hole; forming a sacrificing layer so that the sacrificing layer infills the first hole; forming a second conductive layer on an upper layer of the sacrificing layer so that the second conductive layer is sandwiched by the second insulating layer in an up-down direction; forming a second hole on a position which matches with the first hole so that the second hole penetrates the second insulating layer and the second conductive layer; forming a second side wall insulating layer on a side wall facing the second hole; removing the sacrificing layer after the formation of the second side wall insulating layer; and forming a semiconductor layer so that the semiconductor layer infills the first hole and the second hole after the removal of the sacrificing layer.