Abstract:
The generation of auxiliary crystal defects is induced in a semiconductor substrate. Then the semiconductor substrate is pre-annealed at a temperature above a dissociation temperature at which the auxiliary crystal defects transform into defect complexes, which may be electrically inactive. Then protons may be implanted into the semiconductor substrate to induce the generation of radiation-induced main crystal defects. The defect complexes may enhance the efficiency of the formation of particle-related dopants based on the radiation-induced main crystal defects.
Abstract:
A method for producing a semiconductor is disclosed, the method having: providing a semiconductor body having a first side and a second side; forming an n-doped zone in the semiconductor body by a first implantation into the semiconductor body via the first side to a first depth location of the semiconductor body; and forming a p-doped zone in the semiconductor body by a second implantation into the semiconductor body via the second side to a second depth location of the semiconductor body, a pn-junction forming between said n-doped zone and said p-doped zone in the semiconductor body.
Abstract:
The generation of auxiliary crystal defects is induced in a semiconductor substrate. Then the semiconductor substrate is pre-annealed at a temperature above a dissociation temperature at which the auxiliary crystal defects transform into defect complexes, which may be electrically inactive. Then protons may be implanted into the semiconductor substrate to induce the generation of radiation-induced main crystal defects. The defect complexes may enhance the efficiency of the formation of particle-related dopants based on the radiation-induced main crystal defects.
Abstract:
A method for producing a semiconductor is disclosed, the method having: providing a semiconductor body having a first side and a second side; forming an n-doped zone in the semiconductor body by a first implantation into the semiconductor body via the first side to a first depth location of the semiconductor body; and forming a p-doped zone in the semiconductor body by a second implantation into the semiconductor body via the second side to a second depth location of the semiconductor body, a pn-junction forming between said n-doped zone and said p-doped zone in the semiconductor body.