Abstract:
A transistor substrate includes a plurality of first transistors formed between a power supply wire and a first conductive wire, and a plurality of second transistors formed between the power supply wire and a second conductive wire. A length of a portion of the power supply wire between the plurality of second transistors and a drive signal generation circuit is longer than a length of a portion of the power supply wire between the plurality of first transistors and the drive signal generation circuit, and a total sum of channel widths of second channels included in the plurality of second transistors is wider than a total sum of channel widths of first channels included in the plurality of first transistors.
Abstract:
An area of a region arranged on one side out of a display region in a direction in which scanning signal lines extend is reduced. A display apparatus includes: a partial circuit; a plurality of scanning signal lines; and a plurality of scanning signal connection wirings for connecting the partial circuit and each of the plurality of scanning signal lines. Each of the plurality of scanning signal lines extends in an X-axis direction, and is arranged with a pitch in a Y-axis direction. A plurality of ends respectively included in the plurality of scanning signal connection wirings are connected to the partial circuit, and are arranged in the Y-axis direction. A distance in the Y-axis direction between the respective centers of the two ends adjacent to each other is narrower than the pitch.
Abstract:
To improve detection reliability of an input device provided with a display device.A display device includes an array substrate having an upper surface and a lower surface on an opposite side of the upper surface, a display functional layer provided on the upper surface side of the array substrate, a plurality of first wirings provide on the upper surface side of the array substrate and applied with a signal for driving the display functional layer, a conductive pattern provided on the lower surface of the array substrate so as to be separated from the array substrate, and a detection circuit unit detecting a change in a capacitance value between the plurality of first wirings and the conductive pattern.
Abstract:
According to one embodiment, a display device provided with a sensor, includes a plurality of electrodes for a touch sensor, which comprise a plurality of drive electrodes and a plurality of detection electrodes, and a display panel, wherein a plurality of common electrodes for display which are provided in the display panel are also applied as the drive electrodes, an image display operation of the display panel and a driving operation of the electrodes for the touch sensor are performed in a time sharing manner, and in the driving operation of the electrodes for the touch sensor, a code division multiplexing (CDM) drive is performed in units of successive common electrodes, and a drive signal which synchronizes with the CDM drive is input to all common electrodes other than successive common electrodes subjected to the CDM drive.
Abstract:
According to one embodiment, a transistor substrate includes a substrate, a light source and a sensor element. The light source is mounted on the substrate. The sensor element is mounted on the substrate. The sensor element includes a pixel electrode, a switching element, a common electrode and an organic photo detector layer. The switching element is electrically connected to the pixel electrode. The common electrode is opposed to the pixel electrode. The organic photo detector layer is provided between the pixel electrode and the common electrode. The light source is provided in a same layer as the organic photo detector layer.
Abstract:
According to one embodiment, a display device comprises image signal lines, scanning signal lines, pixels, a display area, pixel electrodes, and common electrodes. The common electrodes are configured to detect an object and to display an image in the display area. The common electrodes include first and second common electrodes which are arranged in a first direction. A first slit is provided between the first and second common electrodes. The first and second common electrodes are supplied a signal different from each other. A second slit is provided in the first common electrode. Each of the first slit and the second slit overlaps one of the image signal lines and extends in an extension direction in which the image signal line extends.
Abstract:
According to one embodiment, in the frame region, a second portion of each signal line is provided between a display region and a switch circuit, and is drawn from the switch circuit toward the display region, a first portion of the signal line is formed by a second wiring layer, provided between the second portion and the display region, and connected to the second portion, the second portion of the signal line and each of a plurality of detection lines are formed by a third wiring layer, and the second portions of the plurality of signal lines and the plurality of detection lines are provided approximately parallel to each other.
Abstract:
In one embodiment, a display device includes a display area, a peripheral area, scanning lines, signal lines, a first driver in the peripheral area, and a second driver in the peripheral area. The display area has an arc-shaped corner. The first driver includes first and second buffers configured to apply voltage to the scanning lines, a first shift register unit configured to control the first buffer unit, and a second shift register unit configured to control the second buffer unit. At the corner, extension directions of the first buffer unit and the first shift register unit are equal to each other. Extension directions of the second buffer unit and the second shift register unit are different from each other.
Abstract:
According to one embodiment, a display device includes a first common electrode and a second common electrode arranged in a first direction, a first switch unit selectively supplying a first drive signal or a second drive signal different from the first drive signal to the first common electrode, and a second switch unit selectively supplying the first drive signal or the second drive signal to the second common electrode, wherein the second common electrode and the first switch unit are arranged in a second direction intersecting the first direction, the first switch unit comprises a first switch circuit and a second switch circuit arranged in the second direction.
Abstract:
A display device includes a substrate, a display region in which a plurality of pixels are provided on the substrate and that has a first side, a second side, a third side, a fourth side, and a plurality of curved portions, a peripheral region located between an end portion of the substrate and the display region, a plurality of scan lines extending in a first direction, a plurality of signal lines extending in a second direction, at least one gate driver arranged in the peripheral region and coupled to the scan lines, a signal line coupling circuit arranged in the peripheral region and coupled to the signal lines, a plurality of terminals aligned in the peripheral region, and a plurality of wiring lines coupling the terminals and the signal line coupling circuit.