Abstract:
A method of processing a non-real time service of a broadcast receiver, which receives and processes a service being transmitted in non-real time, and a broadcast receiver are disclosed. Herein, the method of processing a non-real time service in a broadcast receiver includes receiving in non-real time first signaling information including access information of a content item and second signaling information including detail information of the content item, receiving in non-real time a file belonging to the content item by accessing to a FLUTE session transmitting the content item, wherein the file corresponds to a compressed file that has one or more files including an entry file compressed therein, and decompressing the compressed file and then executing the content item referring to information on the entry file.
Abstract:
A digital broadcasting system and a data processing method are disclosed. A receiving system of the digital broadcasting system includes a receiving unit, an SI handler, and a decoding unit. The receiving unit receives broadcast signals including mobile service data and main service data. The mobile service data configure a data group, and the data group includes a signaling information region in some of a plurality of data regions. The signaling information region may include TPC signaling data and FIC signaling data. The SI handler acquires channel configuration information of the mobile service data from the broadcast signal using pre-decided IP access information, and extracts encoding format information for each IP stream component within a corresponding virtual channel service RTP-packetized and received from the acquired channel configuration information. The decoding unit decodes the mobile service data of the corresponding IP stream component based upon the extracted encoding format information.
Abstract:
A broadcast receiver and a 3D subtitle data processing method thereof are disclosed. A method for processing three dimensional (3D) subtitle data includes receiving, by a receiver, a broadcast signal including 3D subtitle data, extracting, by an extracting unit, subtitle display information for a base view and extended subtitle display information for an extended view from the 3D subtitle data, and controlling, by a controller, a 3D subtitle display using the subtitle display information for the base view and the extended subtitle display information for the extended view.
Abstract:
A method of processing a digital television (DTV) signal in a DTV receiver, receiving a digital television signal including a plurality of extended text table (ETT) instances that appear in transport stream packets with common PID values, the ETT instances having common table ID values, each ETT instance comprising a section header and a message body, the section header containing a table identification (ID) extension field that serves to establish uniqueness of each ETT instance, the message body containing an extended text message (ETM) which provides detailed descriptions of a virtual channel or an event associated with each ETT instance, wherein the section header further contains a protocol version field indicating a protocol version and a current next indicator field; demodulating the digital television signal; and identifying at least one pertinent ETT instance from the plurality of ETT instances.
Abstract:
A method of receiving and process a broadcast signal including a Non-Real Time (NRT) service and a broadcast receiver are disclosed herein. A method of processing a broadcast signal including a Non-Real Time (NRT) service, the method comprises receiving and processing a signaling information table including access information of the NRT service, receiving and storing data of the NRT service based on the signaling information table in non-real time, extracting access information of additional information relating to the NRT service from the signaling information table, and downloading the additional information relating to the NRT service based on the extracted access information.
Abstract:
A digital television (DTV) signal for use in a DTV receiver includes an extended text table (ETT) which includes a header and a message body. The header includes a table identification extension field which serves to establish uniqueness of the ETT, and the message includes an extended text message (ETM). If the ETT is an event ETT, the table ID extension field includes an event identification which specifies an identification number of an event associated with the ETT. On the other hand, if the ETT is a channel ETT, the table identification extension field includes a source identification which specifies a programming source of a virtual channel associated with the ETT. A section-filtering unit included in the DTV receiver is able to use table identification extension fields of a plurality of ETTs for section-filtering a pertinent event or channel ETT from the ETTs.
Abstract:
A digital television (DTV) signal for use in a DTV receiver includes an extended text table (ETT) which includes a header and a message body. The header includes a table identification extension field which serves to establish uniqueness of the ETT, and the message includes an extended text message (ETM). If the ETT is an event ETT, the table ID extension field includes an event identification which specifies an identification number of an event associated with the ETT. On the other hand, if the ETT is a channel ETT, the table identification extension field includes a source identification which specifies a programming source of a virtual channel associated with the ETT. A section-filtering unit included in the DTV receiver is able to use table identification extension fields of a plurality of ETTs for section-filtering a pertinent event or channel ETT from the ETTs.
Abstract:
A digital broadcasting system and a data processing method are disclosed. The data processing method includes receiving a broadcast signal in which main service data and mobile service data are multiplexed, demodulating the broadcast signal to acquire fast-information-channel signaling information including reference time information for a system clock, and outputting demodulation time information of a specific position of a frame of the broadcast signal, decoding the fast-information-channel signaling information, and establishing the reference time information as the system clock at a demodulation time according to on the outputted demodulation time information and decoding the mobile service data according to the system clock.
Abstract:
A receiving system and a data processing method are disclosed. The receiving system includes a receiving unit, a demodulator, a first handler, and a second handler. The receiving unit receives a broadcast signal including fast information channel (FIC) data, mobile service data, and a service signaling channel, the FIC data including a field indicating that a table signaling service guide bootstrap information to the service signaling channel is included therein, and the mobile service data and the service signaling channel are packetized into an RS frame belonging to a desired ensemble. The demodulator demodulates the received broadcast signal. The first handler acquires service guide bootstrap information from the table included in the service signaling channel. And, the second handler accesses a service guide announcement channel by using the service guide bootstrap information.
Abstract:
A digital television (DTV) signal for use in a DTV receiver includes an extended text table (ETT) which includes a header and a message body. The header includes a table identification extension field which serves to establish uniqueness of the ETT, and the message includes an extended text message (ETM). If the ETT is an event ETT, the table ID extension field includes an event identification which specifies an identification number of an event associated with the ETT. On the other hand, if the ETT is a channel ETT, the table identification extension field includes a source identification which specifies a programming source of a virtual channel associated with the ETT. A section-filtering unit included in the DTV receiver is able to use table identification extension fields of a plurality of ETTs for section-filtering a pertinent event or channel ETT from the ETTs.