Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting an uplink signal. A method for transmitting an uplink signal at a UE in a wireless communication system includes, when a virtual cell ID for a reference signal for demodulation of a physical uplink channel is provided, generating a sequence of the reference signal on the basis of the virtual cell ID, and transmitting the generated reference signal to an eNB. A group hopping pattern of the reference signal can be determined on the basis of the virtual cell ID.
Abstract:
This closure relates to narrowband communication supporting an Internet of Things (IoT) service in a next-generation wireless communication system and, more particularly, to a method and apparatus for transmitting and receiving narrowband synchronization signals. A base station transmits a narrowband secondary synchronization signal indicating a narrowband cell identity, a specific sequence generated by performing phase rotation with respect to a base sequence generated through a second Zadoff-Chu sequence having a predetermined length L in a frequency domain and multiplying the base sequence by a cover sequence in element units is used for the narrowband secondary synchronization signal, and a specific root index is selected from among M (M
Abstract:
A method and apparatus for transmitting a Wi-Fi signal in a wireless communication system is provided. A device supporting long-term evolution in unlicensed spectrum (LTE-U) transmits a LTE signal, and transmits the Wi-Fi signal. The Wi-Fi signal may be transmitted by various methods, i.e. by being emulated in the LTE signal, by using a Wi-Fi processor which is embedded in a LTE processor, or by using a Wi-Fi processor which is individual to a LTE processor.
Abstract:
According to an embodiment of the present invention, a discovery signal transmission method, by a device to device (D2D) terminal in a wireless communication system, comprises the steps of: determining a subframe pool in a discovery period; and transmitting a discovery signal in a subframe comprised in the subframe pool; wherein a frequency resource index and a time resource index, on which a discovery signal is transmitted in another discovery period which follows the discovery period, are determined by means of next_nf=(f_shift+floor((nf+Nf*nt)/Nt)) mod Nf and next_nt=(t_shift+nf+Nf*nt) mod Nt, respectively, wherein Nf is the number of discovery resources per subframe, Nt is the number of subframes per discovery period, f_shift is a frequency shift, t_shift is a subframe shift, nf is a frequency resource index on which the discovery signal is transmitted, nt is a time resource index on which the discovery signal is transmitted, and the f_shift and the t_shift are determined on the basis of the value that is indicated by means of an upper layer parameter.
Abstract:
The present invention provides a method for transmitting and receiving a signal for device-to-device (D2D) communication and apparatus for the same, which are used in a wireless access system supporting D2D communication. As one aspect of the present invention, a method for transmitting and receiving a D2D signal by a terminal comprises the steps of: determining whether a D2D signal can be transmitted and received in at least one frequency band; transmitting, to a base station, information on a frequency band capacity; and generating the D2D signal according to the information on a frequency band capacity.
Abstract:
A method of performing interference management by a base station (BS) in a wireless communication system. The BS receives, from another BS, an interference management message including a silenced subframe pattern of the another BS. The BS transmits, to a user equipment (UE), a radio resource configuration (RRC) message including subframe set information for interference measurement, and receives, from the UE, channel state information (CSI) feedback including a result of the interference measurement. The subframe set information is configured based on the silenced subframe pattern of the another BS, and the subframe set information restricts the interference measurement of the UE to specific subframes.
Abstract:
Disclosed is a method by which a transmission terminal transmits a signal by using device-to-device direct communication in a wireless communication system. Particularly, the method comprises the steps of: identifying each of a plurality of resource units as a clean unit or a dirty unit; selecting one of the clean units as a transmission resource if the number of clean units is a first threshold value or more; selecting, as the transmission resource, one among the one or more dirty units from which interference that is a second critical value or more is detected if the number of clean units is less than the first threshold value; and transmitting a device-to-device direct communication signal by using the selected transmission resource.
Abstract:
An embodiment of the present invention provides a method for a terminal for transmitting a device-to-device (D2D) signal in a wireless communication system, the method for transmitting a D2D signal comprising the steps of: determining whether a D2D signal is to be transmitted on the basis of a transmission probability in a set resource region; and, if the D2D signal has been decided to be transmitted, transmitting the D2D signal from the set resource region, wherein the transmission probability is determined in accordance with a resource pool to which the set resource region belongs.
Abstract:
A method and an apparatus for wireless communication with dual connectivity are described. The apparatus supports dual connectivity with a first cell and a second cell and the apparatus comprises a radio frequency (RF) and a processor operatively coupled to the RF unit. The second cell is an overlaid virtual cell which is formed by collaborating the first cell and cell ID of the second cell is different from physical cell ID of the first cell when the processor uses primary synchronization signal (PSS), secondary synchronization signal (SSS) or cell-specific common reference signal (CRS) as synchronization signal for the second cell.
Abstract:
This specification provides a method for performing a discovery procedure in a wireless communication system supporting device to device (D2D) communication. The method is performed by first user equipment and includes monitoring a discovery resource region, selecting a discovery resource for sending a discovery message in the discovery resource region, and transmitting the discovery message to second user equipment through the selected discovery resource. The discovery resource region includes a first discovery resource region and a second discovery resource region.