Abstract:
In a centrifugal oil separator for blow-by gases of an internal combustion engine comprising a rotating component which has at least one inflow port for the introduction of blow-by gases from the crankcase of the internal combustion engine, at least a first outflow port for the discharge of air and at least a second outflow port for the discharge of oil, and also a driveshaft (12) driving the rotating component for driving the rotating component, the driveshaft of the rotating component is connected via a mechanical coupling to a transmission driven by a crankshaft of the internal combustion engine.
Abstract:
A heating element for placing on a pipe or nozzle comprises a current-carrying conductor connectable by means of connecting leads to a power supply. Each of the connecting leads has a terminal contact piece which can be engaged with a contact surface of the heating element. The contact piece can be clamped against the heating element by means of a clamping device. The contact piece rests loosely on the contact surface and the clamping force of the clamping device acts in a substantially normal manner to the contact surface and clamps the contact piece against said contact surface.
Abstract:
A heating element for placing on a pipe or nozzle comprises a current-carrying conductor connectable by means of connecting leads to a power supply. Each of the connecting leads has a terminal contact piece which can be engaged with a contact surface of the heating element. The contact piece can be clamped against the heating element by means of a clamping device. The contact piece rests loosely on the contact surface and the clamping force of the clamping device acts in a substantially normal manner to the contact surface and clamps the contact piece against said contact surface.
Abstract:
Each hollow glass object (7) is pushed by a push-off unit from a dead plate (1) along a curved path (10) onto the conveyor belt (5) in such a way that the curved path (10) is brought tangentially to a contact point (11) in a movement direction (6) of the conveyor belt (5). Subsequent to the contact point (11) each hollow glass object (7) is pushed further by the push-off unit by a further linear path portion (12) in the movement direction (6) of the conveyor belt (5) as far as a release point (13) in which the push-off unit is released from the hollow glass object (7). The push-off unit is then moved back to the starting point (8).
Abstract:
A method for removing nitrogen oxides and particulate matter from the lean exhaust gas of a combustion engine that also contains low concentrations of sulfur oxides. The exhaust gas stream is passed over a nitrogen oxide storage catalyst and a particulate filter, where nitrogen oxides and sulfur oxides are adsorbed by the storage catalyst under lean exhaust gas conditions and the particulate matter is deposited on the particulate filter. The storage catalyst is in a first cycle is periodically denitrated by enriching the exhaust gas regeneration of the particulate filter. Desulfurization of the nitrogen oxide storage catalyst is carried out in a second cycle by raising the temperature of the lean exhaust gas to a value at which the particulate matter combustion on the particulate filter is initiated and then the storage catalyst can be desulfurized by enriching the exhaust gas.
Abstract:
In internal combustion engines having direct injection, an injector injects fuel into the combustion chamber to form an ignitable fuel/air mixture with combustion air supplied separately, the mixture being ignitable by a spark plug. The fuel is injected in a conical pattern, and the electrodes are protected from wetting by fuel and from coking if they are located outside the lateral surface of the fuel cone produced by the injection nozzle. To introduce an ignitable mixture between the electrodes and to ensure optimum operating performance of the internal combustion engine by improving the combustion process, a combustion chamber is configured so that the fuel cone is injected in a free jet which is substantially completely unaffected by the combustion chamber perimeter, and the electrodes of the spark plug project into a fuel vortex emerging from the lateral surface during injection. Electrodes are provided at different spark positions relative to the lateral surface to which the positive potential of the ignition voltage may be applied alternately for ignition of the fuel vortices as a function of the operating point of the internal combustion engine.
Abstract:
The invention relates to a device (1) suitable for controlling a surface (8) of an object (7), notably with respect to raised areas on said surface (8). The device (1) comprises a light source (2, 3) for generating a light beam (5, 6) directed towards the surface as well as a light sensor (4) for detecting light scattered by a raised area on the surface (8). The light beam (5, 6) generated by the light source (2, 3) is configured so as to scan the surface (8) in such a way that the raised area on the surface scatters the light beam (5, 6). If there is no raised area the light beam (5, 6) undergoes ideally no, or else only slight, changes. The light sensor (4) is arranged in such a way that at least part of the scattered light can be detected. In this manner it is possible to detect, for example, impurities on uneven or structured surfaces.
Abstract:
A cable comprising a stress-bearing matrix extending substantially through the length of the cable; and a plurality of conducting elements extending substantially through the length of the cable, the plurality of said conducting elements being located within and spaced from one another by said stress-bearing matrix, wherein at least one of the plurality of conducting elements is in intimate contact with a low friction liner disposed about the at least one of the plurality of conducting elements and the at least one of the conducting elements is longitudinally movable relative to the stress-bearing matrix.
Abstract:
A supercharged internal combustion engine has an exhaust gas turbocharger which includes an exhaust gas turbine and a compressor. The exhaust gas turbine and the compressor are connected to a turbocharger shaft and an appliance for the transmission of power for the purpose of a mechanical step-up drive capability for the exhaust gas turbocharger arranged between the turbocharger shaft and the crankshaft of the internal combustion engine. The appliance includes at least one step-up gear and a controllable hydrodynamic coupling for torque transmission arranged between the crankshaft and the turbocharger shaft. In order to configure the internal combustion engine in a simple and compact constructional manner in such a way that a better increase in torque of the internal combustion engine can be achieved in the lower rotational speed range by the mechanical step-up drive of the exhaust gas turbocharger and to achieve substantially shorter response times during transient operation of the internal combustion engine, the hydrodynamic coupling can be locked up by a mechanical or electro-mechanical clutch and is arranged between the step-up gear and the crankshaft of the internal combustion engine.
Abstract:
An apparatus for sealing shut-off devices located in gas or liquid transporting pipelines having a sealing arrangement, which seals the shut-off device against a casing, the sealing arrangement having a gasket engageable against the circumferential surface of the shut-off device, a seating ring supporting the gasket, two chambers which can be supplied in a controlled manner with a pressure medium, and a method by which the gasket can be raised from the circumferential surface and pressed against the circumferential surface. The sealing arrangement has a driving member positively connected to the seating ring and a displaceable intermediate piston located on the driving member. The first chamber is located between the driving member and the intermediate piston and when subject to the action of the controlled pressure, brings about a movement of the driving member in the gasket raising direction. A second chamber located between the intermediate piston and the casing, when subject to the action of the controlled pressure, brings about a movement of the intermediate piston in the pressing direction. Between the seating ring and the intermediate piston are positioned spring elements which are biased in the pressing direction.