摘要:
The invention reduces the size of an element chip and reduces the manufacturing cost in a thin film transistor type display device in which thin film transistors are formed on a first substrate, wiring lines are formed on a second substrate, and the element chip, including one or more thin film transistors, is peeled off from the first substrate and transferred to the second substrate. In the patterning process of the thin film transistors, holographic lithography or a dynamic auto focus system is used, a design rule of 1.0 μm or less is used, and only a polycrystalline silicon layer and a first metal layer are used as the wiring lines of the element chip.
摘要:
The present invention provides an electronic circuit in which functional elements are formed on a first substrate, wiring lines are formed on a second substrate, element chips including at least one functional element are peeled from the first substrate and transferred onto the second substrate, and the second substrate is curved, a thin film transistor circuit substrate in which a thin film transistor is used as the functional element in the electronic circuit, and an active matrix display device in which the thin film transistor is used as an active matrix device in the thin film transistor circuit substrate. In cases where it is desirable to obtain a flexible electronic circuit substrate, a flexible thin film transistor circuit substrate, or a flexible active matrix display device by forming the second substrate or the wiring lines to be curved, the element chip is not peeled from the second substrate and is not split. The element chips are rectangular, and the short sides of the element chips are arranged along the curving direction of the second substrate.
摘要:
The object of the invention is to simultaneously achieve a reduction in the off current of a switching thin-film transistor and an increase in the on current of a current thin-film transistor in a current-drive thin-film transistor display apparatus.To achieve this object, the switching thin-film transistor is formed as a transistor of LDD structure or offset structure while the current thin-film transistor is formed as a transistor of self-alignment structure. Alternatively, each of the switching thin-film transistor and the current thin-film transistor is formed as a transistor of LDD structure or offset structure, and the LDD length or offset length of the switching thin-film transistor is increased relative to that of the current thin-film transistor.
摘要:
The invention reduces the resistance of a feed line in a display device (electro-optical device), and reduces the loss in the current supply to a light-emitting element, etc. In an electro-optical device including an electro-optical element and a driver circuit to drive the electro-optical element, a wiring board used for the electro-optical device includes a feed line film to supply the driver circuit with current to put the electro-optical element into operation; a signal line film to supply the driver circuit with a level signal to determine intensity of the current to be supplied to the electro-optical element; and an operation line film to supply the driver circuit with an operation instruction signal to instruct whether to put the electro-optical element into operation, and the feed line film constitutes an upper layer among the feed line film, the signal line film, and the operation line film.
摘要:
The present invention provides an electronic circuit in which functional elements are formed on a first substrate, wiring lines are formed on a second substrate, element chips including at least one functional element are peeled from the first substrate and transferred onto the second substrate, and the second substrate is curved, a thin film transistor circuit substrate in which a thin film transistor is used as the functional element in the electronic circuit, and an active matrix display device in which the thin film transistor is used as an active matrix device in the thin film transistor circuit substrate. In cases where it is desirable to obtain a flexible electronic circuit substrate, a flexible thin film transistor circuit substrate, or a flexible active matrix display device by forming the second substrate or the wiring lines to be curved, the element chip is not peeled from the second substrate and is not split. The element chips are rectangular, and the short sides of the element chips are arranged along the curving direction of the second substrate.
摘要:
A reduction in deterioration of a switching element over time in a current driving type emissive apparatus is realized. At the same time, a reduction in power consumption is realized. To this end, an AC voltage or an alternating current is applied between a source and a drain terminal of a switching element, and a DC voltage or a direct current is applied between a first and a second terminal of a luminescent element. This is realized by application of a voltage, which is inverted at predetermined intervals, to two luminescent elements heterogeneously arranged, to a luminescent element and a rectifier arranged in reverse orientation and in parallel, or to a full-wave rectification circuit. At this time, the rectifier is formed by a thin-film transistor, a PN junction, or a PIN junction, and is formed simultaneously with an existing switching element.
摘要:
To provide a method for implementing a gray-scale display of an electro-optical device according to a time ratio gray-scale method without providing reset lines. In an electro-optical device comprising, at an intersection of a scanning line and a data line, an electro-optical element, a driving transistor for driving the electro-optical element, a switching transistor for controlling the driving transistor, and a reset transistor having the function of resetting the driving transistor to a non-conducting state, a gray-scale is obtained by performing a plurality of set-reset operations, each set-reset operation comprising: a setting step of supplying an on-signal to the switching transistor via the scanning line, and of supplying a set signal for selecting a conducting state or a non-conducting state of the driving transistor to the driving transistor via the data line and the switching transistor in accordance with the on-signal; and a resetting stop of supplying an on-signal for the reset transistor via the scanning line so as to reset the driving transistor to the non-conducting state.
摘要:
A display apparatus provides a reduction in the off-current of a switching thin-film transistor and an increase in the on-current of a current thin-film transistor in a current-drive thin-film transistor display apparatus. The switching thin-film transistor is formed as a transistor of LDD structure or offset structure while the current thin-film transistor is formed as a transistor of self-alignment structure. Alternatively, each of the switching thin-film transistor and the current thin-film transistor is formed as a transistor of LDD structure or offset structure, and the LDD length or offset length of the switching thin-film transistor is increased relative to that of the current thin-film transistor.
摘要:
A display apparatus is provided with a current driving type light-emitting device and a driving device for controlling a driving current flowing through the light-emitting device for each pixel of the display apparatus. The display apparatus consists of power source units for supplying power for causing a driving current to flow via the driving device to the light-emitting device via a power source wire, and signal wire driving units for supplying a data signal to the driving device via signal wires. In addition, voltage adjusting units adjust a voltage for the power source units or a data signal from the signal wire driving units so that a quantity of a driving current flowing through the light emitting device when a data signal of a predetermined voltage is supplied to the driving device via signal wires or a quantity of emitted light emitted from the light-emitting device comes close to a predetermined reference value.
摘要:
The invention provides a method and apparatus to obtain accurate gradation by obtaining an accurate ratio of light emitting parts in a display device which implements gradation by forming a plurality of TFTs and a plurality of OELDs in each pixel, directly connecting the TFTs and OELDs, and switching an on and off state of the TFTs, and controlling a light emitting area of the OELDs. A plurality of OELDs have the same shape, and gradation can be implemented by controlling the number of OELDs that emit light. A plurality of OELDs have a round shape. A plurality of OELDs are arranged at the same interval in a vertical and/or horizontal direction. According to this structure, because the light emitting areas of the plurality of OELDs become equal to each other, by controlling the number of OELDs, a ratio of the light emitting areas can be accurately obtained.