Abstract:
A prodrug comprising a heparin and a drug is provided. The prodrug can be used to form a coating on a medical device. The prodrug can also be used with a polymeric material to form a coating on a medical device. The polymeric material can be a hydrophobic polymer, a hydrophilic polymer, a non-fouling polymer, or combinations thereof. The medical device can be implanted in a human being for the treatment of a disease such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Abstract:
A polymeric composition comprising a polysulfone polymer and an elastomeric polymer for use as a coating composition for coating an implantable device, such as a DES, and methods of making and using the implantable device are provided.
Abstract:
A polymer of siloxanes as flexibility monomers and strength monomers is provided. It is also provided a polymer blend that contains a polymer formed of siloxane monomers and strength monomers and another biocompatible polymer. The biocompatible polymer or polymer blend described herein and optionally a bioactive agent can form a coating on an implantable device such as a drug-delivery stent. The implantable device can be used for treating or preventing a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Abstract:
An implantable medical device that can include an amorphous glass primer layer, an amorphous glass drug-containing layer and a nanoporous amorphous glass top-coat layer is disclosed.
Abstract:
A coating for a medical device, particularly for a drug eluting stent, is described. The coating can include a polyacrylate, a blend of polyacrylates, or a blend of the polyacrylate with other polymers, for example, poly(ethylene-co-vinyl alcohol).
Abstract:
Polycationic peptide coatings for implantable medical devices and methods of making the same are described. The methods include applying an emulsion on the device, the emulsion including a polymer and a polycationic peptide. Other methods include incorporation of the polycationic peptide in microspheres and liposomes.
Abstract:
An implantable medical device is disclosed comprising a high-density lipoprotein (HDL), recombinant HDL, high-density lipoprotein mimics (HDLm), or a combination thereof. Method are also disclosed for local and systemic administration HDL, recombinant HDL or HDLm for the prevention, treatment, or amelioration of a vascular disorder, disease or occlusion such as restenosis or vulnerable plaque.