Abstract:
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, w2} to be multiplied on the reference signal. A complex coefficient multiplication unit reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
Abstract:
This invention relates to a terminal apparatus that can possibly reduce situations in which upstream channel data are punctured by a plurality of response signals. When having received at least one piece of downstream allocation control information corresponding to a second downstream unit band, which is other than a first downstream unit band, of a plurality of unit bands, a control unit (208) maps a plurality of response signals, which are corresponding to the respective ones of the plurality of downstream unit bands established, to a first resource corresponding to the plurality of downstream unit bands established. When having received only the downstream allocation control information corresponding to the first downstream unit band of the plurality of unit bands established, the control unit (208) maps the response signal, which is corresponding to the first downstream unit band, to a second resource corresponding to the first downstream unit band.
Abstract:
Provided is a terminal that can accurately measure channel information between the terminal and each TP subjected to CoMP control. In this terminal, a reception processing unit (203) receives a reference signal transmitted from a specific transmission point and control information, and receives a signal transmitted from a transmission point other than the specific transmission point, this signal being received in resources comprising, from among a reference-signal resource group, a resource of a first number specified from the control information, and a resource of a second number separated from the first number by a predetermined number. A CSI generation unit (206) uses the reference signal and a signal received by an interference measurement resource to generate channel information. A transmission signal-forming unit (208) transmits the generated channel information.
Abstract:
Provided is a transmission device with which, by orthogonalizing different transmission bandwidth DM-RSs, CoMP performance is improved, and it is possible to increase MU-MIMO communication multiplexing. In the device, a sequence generator unit (103) generates a reference signal of a number of transmission bandwidths which is less than a prescribed number using a first sequence which is used in a reference signal of a number of transmission bandwidths which is greater than or equal to the prescribed number when a coordinated receiving by a plurality of receiving devices is applied, and generates the reference signal of the number of transmission bandwidth which is less than the prescribed number using a second sequence which differs from the first sequence when the coordinated receiving is not applied. A transmission unit (112) transmits the reference signal.
Abstract:
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method comprises the steps of setting a standard sequence with a standard sequence length and a standard sequence number in a step, setting a threshold value in accordance with an RB number in a step, setting a sequence length corresponding to RB number in a step, judging whether ¦r/N−rb/Nb¦=Xth(m) is satisfied in a step, including a plurality of Zadoff-Chu sequences with a sequence number and a sequence length in a sequence group in a step if the judgment is positive, and allocating the sequence group to the same cell in a step.
Abstract:
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method comprises the steps of setting a standard sequence with a standard sequence length and a standard sequence number in a step, setting a threshold value in accordance with an RB number in a step, setting a sequence length corresponding to RB number in a step, judging whether ¦r/N-rb/Nb¦=Xth(m) is satisfied in a step, including a plurality of Zadoff-Chu sequences with a sequence number and a sequence length in a sequence group in a step if the judgment is positive, and allocating the sequence group to the same cell in a step.
Abstract:
A communication apparatus has a receiver and a decoder. The receiver receives a control signal including first downlink control information and second downlink control information, and receives decoding area information that indicates whether the extended Physical Downlink Control Channel (PDCCH) should be decoded for each of a plurality of terminal apparatuses. The decoder decodes each of a plurality of first mapping candidates in the PDCCH area or decodes each of the plurality of first mapping candidates in the PDCCH area and each of the plurality of second mapping candidates in the extended PDCCH. A number of the second mapping candidates included in the user-specific search space equals to or is more than a number of the first mapping candidates included in the common search space.
Abstract:
A radio communication base station device can efficiently obtain a multiuser diversity gain from frequency scheduling while reducing the amount of a reference signal occupying an uplink. In the device, a grouping section divides a plurality of RBs (Resource Blocks) into a plurality of RB groups. An RB group control unit performs a control to change the correspondence relationship between the RBs and the RB groups with time. When the grouping section divides the RBs into the RB groups, the RB control unit performs a control to change a combination of the RBs included in each of the RB groups with time. A scheduling section performs a scheduling of allocating each of a plurality of mobile stations to each of the RBs in each of the RB groups according to the reception quality of the reference signal.
Abstract:
In a base station, a control unit and a data size regulation unit control the data size of downstream assignment control data and upstream assignment control data in the PDCCH signal based on the communication format used between the base station and a terminal, the number of base station antennas (M) (nonnegative number), the number of terminal antennas (N) (nonnegative number), the bandwidth of the downstream band, and the bandwidth of the upstream band. Specifically, the control unit determines it is unnecessary to adjust the aforementioned data size when the selected communication format is first established between multiple antennas and when where there are multiple for one of M and N and only one for the other. The quality of downstream assignment control data is prevented from degrading, while preventing the number of blind determinations from increasing on the receiving side of the downstream control channel signal.
Abstract:
Provided is a terminal that can accurately measure channel information between the terminal and each TP subjected to CoMP control. In this terminal, a reception processing unit (203) receives a reference signal transmitted from a specific transmission point and control information, and receives a signal transmitted from a transmission point other than the specific transmission point, this signal being received in resources comprising, from among a reference-signal resource group, a resource of a first number specified from the control information, and a resource of a second number separated from the first number by a predetermined number. A CSI generation unit (206) uses the reference signal and a signal received by an interference measurement resource to generate channel information. A transmission signal-forming unit (208) transmits the generated channel information.