Abstract:
Uplink control channel management is disclosed in which a user equipment receives a configuration for multiple uplink control channels for transmission to multiple nodes in multiflow communication with the UE. The UE generates the uplink control channels based on the configuration, wherein each of the uplink control channels is generated for a corresponding one of the nodes. The UE then transmits each of the uplink control channels to the corresponding node. For UEs capable of multiple uplink transmissions, in which the UE communicates with at least one of the nodes over multiple component carriers (CCs), the configuration may designate with of the multiple CCs the UE should transmit the uplink control channel for that node. For UEs capable of only single uplink transmissions, the configuration may designate the transmission of the uplink control channels in either frequency division multiplex (FDM) or time division multiplex (TDM) schemes.
Abstract:
Certain aspects of the present disclosure relate to techniques for aggregating data from a wireless wide area network (WWAN) and wireless local area network (WLAN). In some aspects, a packet convergence entity (e.g., PDCP layer entity) communicates with first and second radio access technology (RAT) links. The packet convergence entity may determine from which of the first and second RAT links a data packet is received and may monitor a sequence number value of each of the received data packets. The packet convergence entity may perform one or more actions based on a determination that the data packets are received out of order. For example, the packet convergence entity may deliver the data packets to an upper layer entity as they are received (e.g., in order or out of order), may reorder the data packets and ignore data packet losses, and/or may request retransmissions of missing data packets.
Abstract:
Methods, systems, and devices for wireless communication are described. A transmitting device, which may be configured without a radio link control (RLC) layer, may receive a packet data convergence protocol (PDCP) protocol data unit (PDU) at a media access control (MAC) layer. The device may then generate a set of transport blocks at the MAC layer using the PDCP PDU and transmit them over a wireless connection. A receiving device, which may also be configured without an RLC layer, may receive the transport blocks at the MAC layer, generate a MAC service data unit (SDU), and convey the MAC SDU to a PDCP. In some cases, the receiving device may then send an acknowledgement (ACK) or negative acknowledgement (NACK) for each transport block that includes a portion of the PDCP PDU, and the transmitting device may indicate to the PDCP layer whether the PDCP PDU was successfully received.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may use a sampling rate that is less than a default sampling rate associated with a wireless carrier. The device may operate in a narrowband portion of a system bandwidth, and the sampling rate may be less than that used by devices monitoring the whole bandwidth. Multiple sampling rates may be used so that a portion of signal processing may be associated with one sampling rate and another portion of the signal processing may be associated with another sampling rate. The size of a cyclic prefix (CP) may be adjusted based on the sampling rate to align subframe timing boundaries for signals of different sampling rates. In some cases, each symbol of a signal may include both a CP and a postfix such that the postfix for each symbol overlaps the prefix of the next symbol.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives an LDCS configuration for a UE relay from a second entity and monitors for an LDCS from the UE relay based on the received LDCS configuration. The second entity may comprise one of an LPN that is not in a dormant state and a Macro cell. The apparatus may receive LDCS configurations for a plurality of LPNs and monitor for a plurality of LPNs based on the received LDCS configurations. When the apparatus determines a need to connect to a LPN, the apparatus may select an LPN among the plurality of LPNs.
Abstract:
Interference cancellation occurs for devices, where the source of the interference is another UE. The victim UE receiver identifies subframes vulnerable to potential interference from other UEs. Candidate resource blocks in the identified vulnerable subframes are listed. Interference is cancelled for edge resource blocks and valid contiguous resource blocks.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for performing coordinated multipoint (CoMP) channel state information (CSI) feedback under multiple channel and interference assumptions. One method generally includes receiving signaling indicating at least one or more interference measurement resources (IMRs) from a network and a configuration with one or more non-zero power reference signal (NZP-RS) resources in which one or more base stations transmit a RS, performing separate interference measurements at least on a per-IMR basis in one or more subframes by forming a baseline interference estimate based on the IMR and forming separate interference estimates based on adding interference from selected NZP-RS resources to the baseline interference estimate, and transmitting one or more CSI feedback reports that correspond to the interference measurements.
Abstract:
Techniques are described for wireless communication. A first method may include transmitting a reference signal from an access point over a shared spectrum to a user equipment (UE), and receiving a measurement of the reference signal from the UE. A second method may include receiving at a UE over a shared spectrum a reference signal from an access point, and transmitting a measurement of the reference signal to the access point. In each of the first and second methods, the measurement may indicate interference with the shared spectrum from outside of a clear channel assessment (CCA) range of the access point. A third method may include receiving a plurality of reference signal measurements, where each reference signal measurement corresponds to one of a plurality of access points and indicates interference with a shared spectrum from outside of a CCA range of the corresponding access point, and performing channel selection for the plurality of access points based at least in part on the received reference signal measurements.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus identifies a UE relay and transmits a very low duty cycle signal (LDCS) configuration of the UE relay. The apparatus may comprise, e.g., an LPN that is not in a dormant state or a macrocell. The apparatus may receive LDCS information for the UE relay. The apparatus may determine the LDCS configuration and transmit the LDCS configuration to the UE relay.
Abstract:
The described aspects include methods and apparatus providing MTC in a wireless network. In an aspect, a narrow bandwidth within a wide system bandwidth is allocated for communicating data related to MTC. MTC control data generated for communicating over one or more MTC control channels for an MTC UE within the narrow bandwidth is transmitted over the one or more MTC control channels. The one or more MTC channels are multiplexed with one or more legacy channels over the wide system bandwidth. Other aspects are provided for transmission mode and content of the MTC control data or other MTC data.