Abstract:
The present disclosure relates to communication schemes for combining 5G communication systems with IoT technology to support higher data transmission rate as post-4G systems and systems for the same. The present disclosure may be used in intelligent services (e.g., smart home, smart building, smart city, smart car, or connected car, health-care, digital education, retail business, security and safety-related services, etc.) based on the 5G communication technology and IoT-related techniques. Disclosed is a method for transmitting a scheduling request (SR) by a user equipment (UE) in a cellular communication system. The transmitting method may comprises receiving configuration information related to transmission of the SR from an enhanced node B (eNB), determining a value of a timer for prohibiting an SR transmission based on the received configuration information, and transmitting a set of SRs, wherein the timer may start at the time of transmission of a first SR of the SR set.
Abstract:
A method and apparatus for controlling measuring the frequency of a new cell within a forbidden registration area when a User Equipment (UE) enters into the new cell in a mobile communication system are provided. If the UE recognizes the new registration area as forbidden, the UE does not measure the frequency of the current cell for a predetermined reference time, and searches for a suitable cell for a normal service by measuring other frequencies. If no suitable cell in the other frequencies is found, the UE removes a measuring limitation and searches for an acceptable cell for a limited service by measuring frequencies including frequency of the current cell.
Abstract:
A method and apparatus for controlling Discontinuous Reception (DRX) by a User Equipment (UE) in a wireless communication system is provided. The UE receives a DRX configuration parameter from an evolved Node B (eNB), and determines whether to start an on-duration timer based on the DRX configuration parameter, after a change in DRX cycle is completed in a subframe, thereby preventing system performance degradation caused by transmission mismatch between the eNB and the UE.
Abstract:
An apparatus and a method for receiving a broadcast service from a cell supporting multiple frequency bands for a frequency by a UE in a wireless communication system is provided. The method includes determining whether a supportable frequency band combination includes a frequency band of a frequency at which a particular broadcast service may be received, and if the supportable frequency band combination includes the frequency band, transmitting, to a base station, a control message including identification information corresponding to a frequency of the broadcast service desired to be received.
Abstract:
A method and apparatus of a terminal and a base station in a mobile communication system are provided. The method for measurement by the terminal includes receiving, from a base station, measurement information including a measurement interval for a deactivated cell, determining a measurement period using the measurement interval, and measuring a signal of the deactivated cell. The measurement period is equal to a value acquired by multiplying the measurement interval by a predefined value greater than 1.
Abstract:
A method and an apparatus are provided for transmitting data by a transmitting apparatus in a communication system. The transmitting apparatus segments a radio link control (RLC) packet data unit (PDU), if an amount of available resources is less than an amount of resources required for retransmitting the RLC PDU. The transmitting apparatus includes polling information in the segmented RLC PDU, if the segmented RLC PDU is a last segmented RLC PDU. The transmitting apparatus transmits the segmented RLC PDU to a receiving apparatus
Abstract:
A method is provided connecting a radio link of a UE in a wireless communication system. The method includes selecting, when the UE fails in connecting the radio link to a first cell for a given time, at least one second cell by using radio link connection information for the first cell overlapping the least one second cell; performing, if a number of the selected second cell is one, cell selection or cell reselection on the selected second cell by using the radio link connection information without performing measurement for the selected second cell; and performing, if the number of the selected second cell is a plurality, measurement for the plurality of selected second cells by using the radio link connection information, and performing cell selection or cell reselection on a second cell decided from among the plurality of selected second cells based on the measured result.
Abstract:
Improving communication efficiency in handover re-establishing an ARQ entity in a mobile communication system is disclosed. The method includes transmitting first Packet Data Convergence Protocol (PDCP) Packet Data Units (PDUs) correctly received from the source cell, together with a special indication requiring reordering of the first PDCP PDUs, from a Radio Link Control (RLC) receiving buffer to a PDCP receiving entity when a handover command message from a source cell to a target cell is received; buffering the first PDCP PDUs in a PDCP PDU reordering buffer by the PDCP receiving entity in response to the special indication; and when a second PDCP PDU is received from the target cell through a new RLC receiving entity for the target cell, outputting third PDCP PDUs up to a PDCP PDU before a first missing PDCP PDU having a sequence number higher than that of the second PDCP PDU from the PDCP reordering buffer. In the method, a PDCP entity performs reordering, thereby improving efficiency of communication.
Abstract:
An apparatus and method are provided for operating Hybrid Automatic Repeat reQuest (HARQ) in a mobile communication system. The method includes receiving a number of HARQ processes of a persistent resource allocation and persistent resource allocation interval information; receiving data according to the persistent resource allocation interval information; calculating a HARQ process IDentifier (ID) using the number of HARQ processes of the persistent resource allocation, the persistent resource allocation interval information, and time information; and associating a HARQ process with the calculated HARQ process ID.
Abstract:
A method for performing a random access procedure by a User Equipment (UE) in a mobile communication system includes transmitting a preamble for identifying the UE, through a first message; receiving a second message from an Evolved Node B (ENB) in response to the first message, the second message including uplink (UL) transmission resource information for transmitting at least one of a transparent Radio Resource Control (RRC) message which is an RRC message that a UE having no RRC control connection transmits for the first time, and Buffer Status Report (BSR) information indicating an amount of UL data; setting a format indicator indicating if the transparent RRC message or the BSR information is included in a third message; and generating the third message according to the set format indicator, and transmitting the generated third message according to the UL transmission resource information.