Abstract:
The disclosure concerns a method of stressing a semiconductor layer comprising: forming, over a silicon on insulator structure having a semiconductor layer in contact with an insulating layer, one or more stressor blocks aligned with first regions of said semiconductor layer in which transistor channels are to be formed, wherein said stressor blocks are stressed such that they locally stress said semiconductor layer; and deforming second regions of said insulating layer adjacent to said first regions by temporally decreasing, by annealing, the viscosity of said insulator layer.
Abstract:
Methods and structures for forming a localized, strained region of a substrate are described. Trenches may be formed at boundaries of a localized region of a substrate. An upper portion of sidewalls at the localized region may be covered with a covering layer, and a lower portion of the sidewalls at the localized region may not be covered. A converting material may be formed in contact with the lower portion of the localized region, and the substrate heated. The heating may introduce a chemical species from the converting material into the lower portion, which creates stress in the localized region. The methods may be used to form strained-channel finFETs.
Abstract:
One or more embodiments of the disclosure concerns a method of forming a stressed semiconductor layer involving: forming, in a surface of a semiconductor structure having a semiconductor layer in contact with an insulator layer, at least two first trenches in a first direction; introducing, via the at least two first trenches, a stress in the semiconductor layer and temporally decreasing, by annealing, the viscosity of the insulator layer; and extending the depth of the at least two first trenches to form first isolation trenches in the first direction delimiting a first dimension of at least one transistor to be formed in the semiconductor structure.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.