摘要:
Disclosed herein are scheduling techniques for transmitting time-critical data in a cost-aware manner over a network comprising a plurality of heterogeneous transmission interfaces. The scheduling problem is formulated as a linear programming problem with the deliver-by deadlines of the various data blocks as hard constraints and minimizing cost set as an objective (soft) constraint. The problem is simplified by assuming data blocks with the earliest deadlines should be scheduled first and the most aggressive interfaces should be used first. To formulate the linear programming problem, the time domain is divided into bins and various bin-level schedules are enumerated for switching the transmission of the data over various transmission interfaces. The linear programming techniques are applied to the various bin configurations and the least costly of the resulting transmission schedule is selected for submission to a switching layer.
摘要:
Implementations for retransmitting erroneous portions within a transmission frame are described. A sender transmits a transmission frame and the receiver performs error detection on portions of the transmission frame in order to determine if any are received in error. The receiver sets up a feedback channel and transmits acknowledgements to the receiver to indicate that one or more portions have been received and to identify any portions that are received with errors. At least some of the acknowledgements are transmitted prior to receipt of the entire transmission frame. The sender retransmits any portions that are identified as being erroneous within the transmission frame.
摘要:
Systems and methods are described relating to accepting a mobile device location query using digital signal processing and presenting an indication of location of the mobile device at least partially based on receiving the location query. Additionally, systems and methods are described relating to means for accepting a mobile device location query using digital signal processing and means for presenting an indication of location of the mobile device at least partially based on receiving the location query.
摘要:
Architecture that enables wireless narrowband devices (e.g., wireless microphones) and white space devices to efficiently coexist on the same telecommunications channels, while not interfering with the usability of the wireless narrowband device. The architecture provides interference detection, strobe generation and detection and, power ramping and suppression (interference-free coexistence with spectrum efficiency). The architecture provides the ability of the white space device to learn about the presence of the microphone. This can be accomplished i using a geolocation database, reactively via a strober device, and/or proactively via the strober device. The strober device can be positioned close to the microphone receiver and signals the presence of a microphone to white space devices on demand. The strober device takes into consideration the microphone's characteristics as well as the relative signal strength from the microphone transmitter versus the white space device, in order to enable maximum use of the available white space spectrum.
摘要:
Systems and methods are described relating to accepting a query from a radio-frequency identification object associated with at least one mobile device; and presenting an indication of location of the at least one mobile device at least partially based on the query response from the radio-frequency identification object associated with the at least one mobile device. Additionally, systems and methods are described relating to means for accepting a query from a radio-frequency identification object associated with at least one mobile device; and means for presenting an indication of location of the at least one mobile device at least partially based on the query response from the radio-frequency identification object associated with the at least one mobile device.
摘要:
Systems and methods are described relating to accepting a query from a radio-frequency identification object associated with at least one mobile device; and presenting an indication of location of the at least one mobile device at least partially based on the query response from the radio-frequency identification object associated with the at least one mobile device. Additionally, systems and methods are described relating to means for accepting a query from a radio-frequency identification object associated with at least one mobile device; and means for presenting an indication of location of the at least one mobile device at least partially based on the query response from the radio-frequency identification object associated with the at least one mobile device.
摘要:
There is provided a computer-implemented method for transmitting data over a wireless network using white spaces. A first white space transmission channel is determined for communicating with mobile client devices. Wireless communication takes place with the mobile client devices over the first white space transmission channel. If the first white space transmission channel becomes unavailable to one of the mobile client devices because of the presence of a primary user on the first white space transmission channel, a different white space transmission channel is determined for communicating with the mobile client device that is affected. The first white space transmission channel may become unavailable to the affected mobile client device, for example, because a primary user begins using the first white space transmission channel in proximity to the affected device. The primary user may be a wireless microphone. Thereafter, communication with the affected wireless device takes place on the different white space transmission channel, while unaffected devices continue to communicate on the first white space transmission channel. Also provided are an exemplary wireless base station and an exemplary mobile client device.
摘要:
A system and method for peer based localization system using radio technology, such as Bluetooth or Wi-Fi ad-hoc technology that enables mobile devices such as cell phones, smart phones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, etc. to discover their physical location relative to one another. In addition, the peer based localization can use a plurality of radio technologies to increase the accuracy of the physical location estimates. Additionally or alternatively, the peer based localization technique can be combined with infrastructure based location techniques, such as triangulation, GPS, or infrastructure based Wi-Fi localization in order to transpose virtual coordinates into physical coordinates.
摘要:
Functionality is described by selecting a channel in an environment in which non-privileged entities have subordinate access rights to spectrum compared to privileged entities. The functionality operates by identifying spectrum that is available to all nodes involved in communication (where the nodes are associated with non-privileged entities). The functionality then generates a suitability assessment for each candidate channel within the available spectrum. The functionality selects a channel having the most desirable suitability assessment. The functionality can form a suitability assessment for a candidate channel of arbitrary width, e.g., by combining suitability assessments associated with constituent spectrum units within the candidate channel.
摘要:
Techniques for sensory enhancement and augmentation are described. Some embodiments provide an audible assistance facilitator system (“AAFS”) configured to provide audible assistance to a user via a hearing device. In one embodiment, the AAFS receives data that represents an utterance of a speaker received by a hearing device of the user, such as a hearing aid, smart phone, media device, or the like. The AAFS identifies the speaker based on the received data, such as by performing speaker recognition. The AAFS determines speaker-related information associated with the identified speaker, such as by determining an identifier (e.g., name or title) of the speaker, by locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AAFS then informs the user of the speaker-related information, such as by causing an audio representation of the speaker-related information to be output via the hearing device.