摘要:
Methods and apparatus provide for estimating leakage power as a function of delay times. Delay times and leakage power values may be measured for a test circuit of a given circuit design. A statistical sampling of the measurements may be obtained for the test circuit. The delay data and leakage power data may be correlated to express and estimate leakage power as a function of delay distribution. The test circuit may include a proposed circuit that is simulated, and the method and apparatus also may provide for: creating a schematic design of the test circuit, having, for example, defined poly gate lengths, on-chip devices, and power sources; incorporating a delay chain into the schematic design to get delay distribution data; and utilizing the schematic design, wherein the utilitzation may be a simulation.
摘要:
A drive strength tunable FinFET, a method of drive strength tuning a FinFET, a drive strength ratio tuned FinFET circuit and a method of drive strength tuning a FinFET, wherein the FinFET has either at least one perpendicular and at least one angled fin or has at least one double-gated fin and one split-gated fin.
摘要:
A hydroxypropyl methyl cellulose film comprises hydroxypropyl methyl cellulose plasticised with a plasticiser comprising a fruit acid or a salt or a fruit acid, preferably lactic acid. The film is safe for human consumption and finds use as a wall material of an ingestible delivery capsule, e.g. containing a dose of a pharmaceutical preparation.
摘要:
Disclosed are embodiments of a trigate field effect transistor that comprises a fin-shaped semiconductor body with a channel region and source/drain regions on either side of the channel region. Thick gate dielectric layers separate the top surface and opposing sidewalls of the channel region from the gate conductor in order to suppress conductivity in the channel planes. A thin gate dielectric layer separates the upper corners of the channel region from the gate conductor in order to optimize conductivity in the channel corners. To further emphasize the current flow in the channel corners, the source/drain regions can be formed in the upper corners of the semiconductor body alone. Alternatively, source/drain extension regions can be formed only in the upper corners of the semiconductor body adjacent to the gate conductor and deep source/drain diffusion regions can be formed in the ends of the semiconductor body.
摘要:
Disclosed herein are improved fin-type field effect transistor (FinFET) structures and the associated methods of manufacturing the structures. In one embodiment FinFET drive current is optimized by configuring the FinFET asymmetrically to decrease fin resistance between the gate and the source region and to decrease capacitance between the gate and the drain region. In another embodiment device destruction at high voltages is prevented by ballasting the FinFET. Specifically, resistance is optimized in the fin between the gate and both the source and drain regions (e.g., by increasing fin length, by blocking source/drain implant from the fin, and by blocking silicide formation on the top surface of the fin) so that the FinFET is operable at a predetermined maximum voltage.
摘要:
A semiconductor structure and the associated method for fabricating the same. The semiconductor structure includes (a) a semiconductor substrate, (b) a back gate region on the semiconductor substrate, (c) a back gate dielectric region on the back gate region, (d) a semiconductor region on the back gate dielectric region comprising a channel region disposed between first and second source/drain (S/D) regions, (e) a main gate dielectric region on the semiconductor region, (f) a main gate region on the main gate dielectric region, (g) a first contact pad adjacent to the first S/D region and electrically insulated from the back gate region, and (h) a first buried dielectric region that physically and electrically isolates the first contact pad and the back gate region, and wherein the first buried dielectric region has a first thickness in the first direction at least 1.5 times a second thickness of the back gate region.
摘要:
The present invention provides dynamic control of back gate bias on pull-up pFETs in a FinFET SRAM cell. A method according to the present invention includes providing a bias voltage to a back gate of at least one transistor in the SRAM cell, and dynamically controlling the bias voltage based on an operational mode (e.g., Read, Half-Select, Write, Standby) of the SRAM cell.
摘要:
Disclosed are embodiments of a structure that comprises a first device, having multiple FETs, and a second device, having at least one FET. Sections of a first portion of a semiconductor layer below the first device are doped and contacted to form back gates. A second portion of the semiconductor layer below the second device remains un-doped and un-contacted and, thus, functions as an insulator. Despite the performance degradation of the first device due to back gate capacitance, the back gates result in a net gain for devices such as, SRAM cells, which require precise Vt control. Contrarily, despite marginal Vt control in the second device due to the absence of back gates, the lack of capacitance loading and the added insulation result in a net gain for high performance devices such as, logic circuits.
摘要:
Non gelatin film materials e.g. films of modified cellulose materials find use as dosage forms. Substances are incorporated into the film matrix and films thus prepared may be administered really, or otherwise internally, or epidermally. The administable form may comprise a matrix which contains at least one water soluble polymer in the form of a film, in addition to at least one active ingredient, to produce a therapeutic, organoleptic or cosmetic effect.
摘要:
Disclosed are planar and non-planar field effect transistor (FET) structures and methods of forming the structures. The structures comprise segmented active devices (e.g., multiple semiconductor fins for a non-planar transistor or multiple semiconductor layer sections for a planar transistor) connected at opposite ends to source/drain bridges. A gate electrode is patterned on the segmented active devices between the source/drain bridges such that it has a reduced length between the segments (i.e., between the semiconductor fins or sections). Source/drain contacts land on the source/drain bridges such that they are opposite only those portions of the gate electrode with the reduced gate length. These FET structures can be configured to simultaneously maximize the density of the transistor, minimize leakage power and maintain the parasitic capacitance between the source/drain contacts and the gate conductor below a preset level, depending upon the performance and density requirements.