Abstract:
Bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements may include a bearing surface. At least one of the plurality of superhard bearing elements may include at least one texture feature that may be formed in a lateral surface thereof. The bearing assembly may also include a support ring that carries the superhard bearing elements.
Abstract:
In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
Abstract:
Methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) include partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDCs may include at least one stress relieving partition.
Abstract:
Embodiments relate to polycrystalline diamond compacts (“PDCs”) and methods of manufacturing such PDCs in which an at least partially leached polycrystalline diamond (“PCD”) table is infiltrated with a low viscosity cobalt-based alloy infiltrant.
Abstract:
In an embodiment, a method of non-destructively testing a polycrystalline diamond (“PCD”) element includes providing a PCD element including a plurality of bonded diamond grains defining a plurality of interstitial regions, at least a portion of the plurality of interstitial regions including one or more interstitial constituents disposed therein. The method further includes exposing the PCD element to neutron radiation from a neutron radiation source, receiving a portion of the neutron radiation that passes through the PCD element, and determining at least one characteristic of the PCD element at least partially based on the portion of the neutron radiation received. For example, the at least one characteristic may be the presence and distribution of metal-solvent catalyst, residual metal-solvent catalyst, an infiltrant, residual infiltrant, or other interstitial constituents within a PCD element.
Abstract:
In an embodiment, a method of characterizing a polycrystalline diamond compact is disclosed. The method includes providing the polycrystalline diamond compact, and measuring at least one magnetic characteristic of a component of the polycrystalline diamond compact.
Abstract:
Embodiments relate to methods of manufacturing polycrystalline diamond compacts (“PDCs”). In an embodiment, a method of fabricating a PDC includes positioning a plurality of diamond particles adjacent to a cemented carbide material. The cemented carbide material includes one or more types of tungsten-containing eta phases. The method further includes subjecting the plurality of diamond particles and the cemented carbide material to a high-pressure/high-temperature process effective to sinter the plurality of diamond particles so that a polycrystalline diamond table is formed without tungsten carbide grains of the cemented carbide material exhibiting abnormal grain growth that project into the polycrystalline diamond table.
Abstract:
In an embodiment, a rotary drill bit includes a bit body having a leading end structure configured to facilitate drilling a subterranean formation, and a plurality of cutting elements mounted to the bit body. At least one of the plurality of cutting elements includes a polycrystalline diamond compact (“PDC”) comprising a cemented carbide substrate including a first cemented carbide portion and a second cemented carbide portion bonded to the first cemented carbide portion and exhibiting an erosion resistance that is greater than the first cemented carbide portion. The PDC further comprises a polycrystalline diamond (“PCD”) table bonded to the first cemented carbide portion. The PCD table includes a plurality of bonded diamond grains exhibiting diamond-to-diamond bonding therebetween, with the plurality of bonded diamond grains defining a plurality of interstitial regions.
Abstract:
Embodiments of the invention relate to a polycrystalline diamond compact. In an embodiment, the polycrystalline diamond compact includes a substrate and a polycrystalline diamond table including a first polycrystalline diamond layer bonded to the substrate and at least a second polycrystalline diamond layer. At least an un-leached portion of the polycrystalline diamond table includes a plurality of diamond grains defining a plurality of interstitial regions and a metal-solvent catalyst occupying at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oe or more and a specific magnetic saturation of about 15 G·cm3/g or less. The second polycrystalline diamond layer exhibits a second average diamond grain size that is less than a first average diamond grain size of the first polycrystalline diamond layer and/or the first polycrystalline diamond layer includes a tungsten-containing material therein.
Abstract:
Embodiments of the invention relate to a polycrystalline diamond compact. In an embodiment, the polycrystalline diamond compact includes a substrate and a polycrystalline diamond table including a first polycrystalline diamond layer bonded to the substrate and at least a second polycrystalline diamond layer. At least an un-leached portion of the polycrystalline diamond table includes a plurality of diamond grains defining a plurality of interstitial regions and a metal-solvent catalyst occupying at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oe or more and a specific magnetic saturation of about 15 G·cm3/g or less. The second polycrystalline diamond layer exhibits a second average diamond grain size that is less than a first average diamond grain size of the first polycrystalline diamond layer and/or the first polycrystalline diamond layer includes a tungsten-containing material therein.