Abstract:
An automated microscope system is described that detects dicentric chromosomes (DCs) in metaphase cells arising from exposure to ionizing radiation. The radiation dose depends on the accuracy of DC detection. Accuracy is increased using image segmentation methods are used to rank high quality cytogenetic images and eliminate suboptimal metaphase cell data in a sample based on novel quality measures. When a sufficient number of high quality images are detected, the microscope system is directed to terminate metaphase image collection for a sample. The microscope system integrates image selection procedures that control an automated digitally controlled microscope with the analysis of acquired metaphase cell images to accurately determine radiation dose. Early termination of image acquisition reduces sample processing time without compromising accuracy. This approach constitutes a reliable and scalable solution that will be essential for analysis of large numbers of potentially exposed individuals.
Abstract:
An automated microscope system is described that detects dicentric chromosomes (DCs) in metaphase cells arising from exposure to ionizing radiation. The radiation dose depends on the accuracy of DC detection. Accuracy is increased using image segmentation methods are used to rank high quality cytogenetic images and eliminate suboptimal metaphase cell data in a sample based on novel quality measures. When a sufficient number of high quality images are detected, the microscope system is directed to terminate metaphase image collection for a sample. The microscope system integrates image selection procedures that control an automated digitally controlled microscope with the analysis of acquired metaphase cell images to accurately determine radiation dose. Early termination of image acquisition reduces sample processing time without compromising accuracy. This approach constitutes a reliable and scalable solution that will be essential for analysis of large numbers of potentially exposed individuals.
Abstract:
A keypad bezel for attaching to a housing of a handheld computer comprises a main body including plurality of screw holes and tabs for connecting the main body to the computer housing and a plurality of leverage points in the main body useful for removing the keypad bezel from the housing. To remove the keypad bezel, the screws are removed from the screw holes and a removal tool is positioned so that it mates with recesses the keypad bezel and force is applied to the removal tool in a direction way from the housing. The force removes the tabs out of corresponding slots in the housing, allowing the bezel to be removed.
Abstract:
In a heterogeneous network with a shared cell-ID, the current power control mechanism only configures common power control parameters for all UE in a macro cell, and this doesn't match the receiving power of a wireless access point associated actually, and may lead to serious interferences. The invention provides a method used for uplink power control in a UE of a heterogeneous network with a shared cell-ID, wherein, a wireless access point informs the UE of power control parameters which is related to an associated wireless access point of the UE in the heterogeneous networks, the UE determines a uplink power according to the power control parameters, and transmits uplink data based on the determined uplink power. The invention may configure uplink power for the UEs associated to different wireless access points in a heterogeneous network with a shared cell-ID, to make them have the power control parameters matching with their wireless access points. Thus it's allowed that a performance equivalence between different tiers of networks in a heterogeneous network.
Abstract:
Provided are a single-card multi-mode multi-operator authentication method and device. An MAML in an AP receives an authentication request from a user, and authenticates hybrid networks found by a UE. Under the condition of determining that the authentication on each network in the hybrid networks is passed, the MAML receives terminal position information sent by the UE, and determines whether the terminal position information is the same as operator area information registered by the UE in advance, if so, the MAML acquires signal strength of each network and determines whether the signal strength of each network falls within a signal strength range covered by a base station under the network, if so, determines that all the networks in the hybrid networks are authenticated successfully, otherwise, determines that the authentication fails. The security in using an SIM card by a valid user and secure network service are ensured.
Abstract:
A first photoresist layer is patterned with a first pattern that includes an opening in a region between areas of two adjacent via holes to be formed. The opening in the first photoresist is transferred into a template layer to form a line trench therein. The lateral dimension of the trench is reduced by depositing a contiguous spacer layer that does not fill the trench completely. An etch-resistant material layer is conformally deposited and fills the trench, and is subsequently recessed to form an etch-resistant material portion filling the trench. A second photoresist layer is applied and patterned with a second pattern, which includes an opening that includes areas of two via holes and an area therebetween. A composite pattern of an intersection of the second pattern and the complement of the pattern of the etch-resistant material portion is transferred through the template layer.
Abstract:
Assessing open circuit and short circuit defect levels in circuits implemented in state of the art ICs is difficult when using conventional test circuits, which are designed to assess continuity and isolation performance of simple structures based on individual design rules. Including circuit blocks from ICs in test circuits provides a more accurate assessment of defect levels expected in ICs using the circuit blocks. Open circuit defect levels may be assessed using continuity chains formed by serially linking continuity paths in the circuit blocks. Short circuit defect levels may be assessed by using parallel isolation test structures formed by linking isolated conductive elements in parallel to buses. Forming isolation connections on a high metal level enables location of shorted elements using voltage contrast on partially deprocessed or partially fabricated test circuits.
Abstract:
The present invention proposes a method and device for controlling uplink power. A central processing unit firstly determines a path loss generation mode for a user equipment according to a predetermined rule and then transmits an instruction to the user equipment, the instruction including the determined path loss generation mode so that the user equipment determines uplink power of fee user equipment according to the path loss generation mode. A user equipment acquires an instruction from a central processing unit to indicate a path loss generation mode of the user equipment, then determines a path loss of the user equipment according to the path loss generation mode indicated by the central processing unit, and then acquires uplink transmission power of the user equipment according to the determined path loss of the user equipment. With the inventive solution, a central processing unit may configure a path loss generation mode flexibly for a user equipment to accommodate different uplink CoMP scenarios and thereby achieve better CoMP performance.
Abstract:
Embodiments of the present invention disclose methods and apparatuses for dynamically triggering an uplink sounding reference signal for a carrier aggregation system, methods and apparatus for transmitting an uplink sounding reference signal for a carrier aggregation system. One embodiment discloses a method for dynamically configuring an uplink sounding reference signal for a carrier aggregation system, wherein an uplink schedule in the system comprises an SRS request field. The method comprises: pre-assigning mapping relationships between different values of the SRS request in the uplink schedule and joint coding of a carrier aggregation parameter and at least one user-specific RSR parameters, the carrier aggregation parameter indicating one or more carrier components; determining the carrier aggregation parameter and the at least one user-specific SRS parameter; assigning values to the SRS request field in the uplink schedule based on the pre-assigned mapping relationships, the determined carrier aggregation parameter and the at least one user-specific SRS parameter; transmitting the uplink schedule.
Abstract:
Assessing open circuit and short circuit defect levels in circuits implemented in state of the art ICs is difficult when using conventional test circuits, which are designed to assess continuity and isolation performance of simple structures based on individual design rules. Including circuit blocks from ICs in test circuits provides a more accurate assessment of defect levels expected in ICs using the circuit blocks. Open circuit defect levels may be assessed using continuity chains formed by serially linking continuity paths in the circuit blocks. Short circuit defect levels may be assessed by using parallel isolation test structures formed by linking isolated conductive elements in parallel to buses. Forming isolation connections on a high metal level enables location of shorted elements using voltage contrast on partially deprocessed or partially fabricated test circuits.