Abstract:
Embodiments of the present invention provide a method of forming an electrical connection on a device. In one embodiment, the electrical connection is attached to the device via an adhesive having electrically conductive particles disposed therein. In one embodiment, the adhesive is cured while applying pressure such that the conductive particles align, have a reduced particle-to-particle spacing, or come into contact with each other to provide a more directly conductive (less resistive) path between the electrical connection and the device. In one embodiment of the present invention, a method for forming an electrical lead on a partially formed solar cell during formation of the solar cell device is provided. The method comprises placing a side-buss wire onto a pattern of electrically conductive adhesive disposed on a back contact layer of a solar cell device substrate, laminating the side-buss wire and electrically conductive adhesive between the solar cell device substrate and a back glass substrate to form a composite solar cell structure, and curing the electrically conductive adhesive while applying pressure and heat to the composite solar cell structure
Abstract:
The invention provides an adjustable showerhead that provides a variety of distinct discharge water patterns. The showerhead features a ceramic disk assembly that provide long-life and reliable operation to the showerhead. The showerhead includes a wand having a receiver with a discharge outlet and a depending lug. The disk assembly includes an upper ceramic disk fixedly positioned within the receiver, and has a curvilinear groove and a water inlet hole that receives water from the wand's discharge outlet. A lower ceramic disk is movably positioned within the receiver against the upper disk, and has a plurality of outlet holes arrayed along the periphery. A bushing resides within a central opening of the lower disk and operably connects the lower disk to the receiver. An outlet assembly is operably connected to the lower disk, and includes an inner faceplate with a plurality of discharge outlets, and an outer faceplate with a plurality of discharge outlets. An adjusting ring is operably connected to the lower disk. An operator rotates the adjusting ring to move the showerhead between various disk positions to attain the desired water discharge pattern.
Abstract:
A method for selectively altering a predetermined portion of an object or an external member in contact with the predetermined portion of the object is disclosed. The method includes selectively electrically addressing the predetermined portion, thereby locally resistive heating the predetermined portion, and exposing the object, including the predetermined portion, to the external member.
Abstract:
A Raman signal-enhancing structure includes a substrate and a plurality of protrusions located at predetermined positions relative to a surface of the substrate. Each protrusion includes a Raman signal-enhancing material and has cross-sectional dimensions of less than about 50 nanometers. The structure also includes an edge that includes an intersection between two nonparallel surfaces of at least one protrusion. A Raman spectroscopy system includes such a Raman signal-enhancing structure, and Raman spectroscopy may be performed on an analyte using such structures and systems. A method for forming such a Raman signal-enhancing structure includes nanoimprint lithography.
Abstract:
Raman-enhancing structures include a layer of dielectric material, a superlens configured to focus electromagnetic radiation having a wavelength greater than about 100 nanometers to a two-dimensional focal area having linear dimensions less than about 100 nanometers on a surface of the layer of dielectric material, and at least two nanoparticles comprising a Raman-enhancing material disposed proximate the focal area. Additional Raman-enhancing structures include a layer of dielectric material, a layer of conductive material, and at least two nanoparticles comprising a Raman-enhancing material disposed on a second, opposite surface of the layer of dielectric material. The layer of conductive material has a plurality of apertures therethrough that are arranged in a two-dimensional array. Methods for conducting Raman spectroscopy are performed using such structures and systems.
Abstract:
A switching device includes at least one bottom electrode and at least one top electrode. The top electrode crosses the bottom electrode at a non-zero angle, thereby forming a junction. A metal oxide layer is established on at least one of the bottom electrode or the top electrode. A molecular layer including a monolayer of organic molecules and a source of water molecules is established in the junction. Upon introduction of a forward bias, the molecular layer facilitates a redox reaction between the electrodes, thereby reducing a tunneling gap between the electrodes.
Abstract:
A method for increasing adhesion between a substrate and a polymeric imprintable material during an imprinting procedure. The method includes chemically bonding a plurality of molecules to a surface of a substrate to form a self-assembled monolayer thereon. A monomer is copolymerized with the self-assembled monolayer to form a polymeric imprintable material that is chemically bonded to the self-assembled monolayer. Adhesion between the polymeric imprintable material and the substrate is substantially increased by the self-assembled monolayer.
Abstract:
A SERS-active structure is disclosed that includes a substrate and at least one nanowire disposed on the substrate. The at least one nanowire includes a core including a first material and a coating including a SERS-active material. A SERS system is also disclosed that includes a SERS-active structure. Also disclosed are methods for forming a SERS-active structure and methods for performing SERS with SERS-active structures.
Abstract:
Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed in a waveguide. The molecular analysis device also includes a wavelength demultiplexer and radiation sensors disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.
Abstract:
Controlling the propagation of electromagnetic radiation is described. A photonic bandgap medium is placed in the path of the electromagnetic radiation, the photonic bandgap medium comprising a photorefractive material. Control radiation is projected onto a surface of the photonic bandgap medium. The control radiation spatially varies a refractive index of the photorefractive material to control propagation of the electromagnetic radiation through the photonic bandgap medium.